

- A variable can be unobserved (latent) because:
 - it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process
 - e.g., speech recognition models, mixture models ...
 - it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors; or was measure with a noisy channel, etc.
 - e.g., traffic radio, aircraft signal on a radar screen,
- Discrete latent variables can be used to partition/cluster data into sub-groups (mixture models, forthcoming).
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc., later lectures).

© Eric Xing @ CMU, 2006-2011

3

Uni-modal and multi-modal distributions

© Eric Xing @ CMU, 2006-2011

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
 - Zis a latent class indicator vector:

$$p(\boldsymbol{z}_n) = \operatorname{multi}(\boldsymbol{z}_n : \pi) = \prod_k (\pi_k)^{\boldsymbol{z}_n^k}$$

• Xis a conditional Gaussian variable with a class-specific mean/covariance

$$p(\mathbf{x}_{n} \mid \mathbf{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x}_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} (\mathbf{x}_{n} - \mu_{k}) \right\}$$

• The likelihood of a sample:

nixture component

$$p(x_n|\mu, \Sigma) = \sum_{k} p(z^k = 1|\pi) p(x, |z^k = 1, \mu, \Sigma)$$

$$= \sum_{z_n} \prod_{k} \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_{k} \pi_k N(x, |\mu_k, \Sigma_k)$$

© Eric Xing @ CMU, 2006-2011

7

Gaussian Mixture Models (GMMs)

• Consider a mixture of K Gaussian components:

$$p(x_n | \mu, \Sigma) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$
mixture proportion mixture component

- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

© Eric Xing @ CMU, 2006-2011

Learning mixture models

© Eric Xing @ CMU, 2006-2011

0

Why is Learning Harder?

• In fully observed iid settings, the log likelihood decomposes into a sum of local terms.

$$\ell_c(\theta; D) = \log p(x, z \mid \theta) = \log p(z \mid \theta_z) + \log p(x \mid z, \theta_x)$$

• With latent variables, all the parameters become coupled together via *marginalization*

$$\ell_c(\theta; D) = \log \sum p(x, z \mid \theta) = \log \sum p(z \mid \theta_z) p(x \mid z, \theta_x)$$

Gradient Learning for mixture models

 We can learn mixture densities using gradient descent on the log likelihood. The gradients are quite interesting:

$$\begin{split} \boldsymbol{\ell}(\theta) &= \log \boldsymbol{p}(\mathbf{x} \mid \theta) = \log \sum_{k} \pi_{k} \boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k}) \\ \frac{\partial \boldsymbol{\ell}}{\partial \theta} &= \frac{1}{\boldsymbol{p}(\mathbf{x} \mid \theta)} \sum_{k} \pi_{k} \frac{\partial \boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta} \\ &= \sum_{k} \frac{\pi_{k}}{\boldsymbol{p}(\mathbf{x} \mid \theta)} \boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k}) \frac{\partial \log \boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta} \\ &= \sum_{k} \pi_{k} \frac{\boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k})}{\boldsymbol{p}(\mathbf{x} \mid \theta)} \frac{\partial \log \boldsymbol{p}_{k}(\mathbf{x} \mid \theta_{k})}{\partial \theta_{k}} = \sum_{k} r_{k} \frac{\partial \boldsymbol{\ell}_{k}}{\partial \theta_{k}} \end{split}$$

- In other words, the gradient is the responsibility weighted sum of the individual log likelihood gradients.
- Can pass this to a conjugate gradient routine.

© Eric Xing @ CMU, 2006-2011

11

Parameter Constraints

- Often we have constraints on the parameters, e.g. $\Sigma_k \pi_k = 1$, Σ being symmetric positive definite (hence $\Sigma_{ii} > 0$).
- We can use constrained optimization, or we can reparameterize in terms of unconstrained values.
 - For normalized weights, use the softmax transform:
 - For covariance matrices, use the Cholesky decomposition:

$$\Sigma^{-1} = \mathbf{A}^{\mathcal{T}} \mathbf{A}$$

where A is upper diagonal with positive diagonal:

$$\mathbf{A}_{ii} = \exp(\lambda_i) > 0$$
 $\mathbf{A}_{ij} = \eta_{ij}$ $(j > i)$ $\mathbf{A}_{ij} = 0$ $(j < i)$

the parameters γ_{i} , λ_{i} , $\eta_{ij} \in \mathbb{R}$ are unconstrained.

• Use chain rule to compute $\frac{\partial \ell}{\partial \pi}, \frac{\partial \ell}{\partial A}$

© Eric Xing @ CMU, 2006-2011

Identifiability

- A mixture model induces a multi-modal likelihood.
- Hence gradient ascent can only find a local maximum.
- Mixture models are unidentifiable, since we can always switch the hidden labels without affecting the likelihood.
- Hence we should be careful in trying to interpret the "meaning" of latent variables.

Identifiability

© Eric Xing @ CMU, 2006-2011

Toward the EM algorithm

- E.g., A mixture of K Gaussians:
 - Z is a latent class indicator vector

$$Z_n$$
 X_n

$$p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$

 X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right\}$$

• The likelihood of a sample:

$$p(x_n | \mu, \Sigma) = \sum_k p(z^k = 1 | \pi) p(x_n | z^k = 1, \mu, \Sigma)$$

$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x_n | \mu_k, \Sigma_k)$$

© Eric Xing @ CMU, 2006-2011

15

Toward the EM algorithm

Recall MLE for completely observed data

• Data log-likelihood

$$\ell(\mathbf{\theta}; D) = \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} | \pi) p(x_{n} | z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}} + \sum_{n} \log \prod_{k} N(x_{n}; \mu_{k}, \sigma)^{z_{n}^{k}}$$

$$= \sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k} - \sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{k})^{2} + C$$

• MLE $\hat{\pi}_{k,MLE} = \arg \max_{\pi} \ell(\theta; D),$

$$\hat{\mu}_{k,MLE} = \arg\max_{\mu} \ell(\mathbf{\theta}; D)$$

$$\hat{\sigma}_{k,MLE} = \arg\max_{\sigma} \ell(\mathbf{\theta}; D)$$

$$\Rightarrow \hat{\mu}_{k,MLE} = \frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}}$$

• What if we do not know z_n ?

© Eric Xing @ CMU, 2006-2011

Expectation-Maximization (EM) Algorithm

© Eric Xing @ CMU, 2006-2011

17

Expectation-Maximization (EM) Algorithm

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
 - No need to choose step size.
 - Enforces constraints automatically.
 - Calls inference and fully observed learning as subroutines.
- EM is an Iterative algorithm with two linked steps:
 - E-step: fill-in hidden values using inference, $p(z|x, \theta)$.
 - M-step: update parameters t+1 using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

© Eric Xing @ CMU, 2006-2011

K-means

- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop
 - For each point n=1 to N,

compute its cluster label:
$$z_n^{(t)} = \arg\max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

• For each cluster k=1:K

$$\mu_k^{(t+1)} = \frac{\sum_{n} \delta(z_n^{(t)}, k) x_n}{\sum_{n} \delta(z_n^{(t)}, k)}$$

$$\Sigma_k^{(t+1)} = \dots$$

Expectation-Maximization

- Start:
 - "Guess" the centroid μ_k and coveriance Σ_k of each of the K clusters
- Loop

How is EM derived?

- A mixture of K Gaussians:
 - Zis a latent class indicator vector

$$p(\mathbf{z}_n) = \text{multi}(\mathbf{z}_n : \pi) = \prod_{k} (\pi_k)^{\mathbf{z}_n^k}$$

X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}^{k} = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} \left| \boldsymbol{\Sigma}_{k} \right|^{1/2}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) \right\}$$

• The likelihood of a sample:

$$\begin{aligned} p(x_n | \mu, \Sigma) &= \sum_{k} p(z_n^{\ k} = 1 | \pi) p(x_n | z_n^{\ k} = 1, \mu, \Sigma) \\ &= \sum_{z_n} \prod_{k} \left(\left(\pi_k \right)^{z_n^{\ k}} N(x_n : \mu_k, \Sigma_k)^{z_n^{\ k}} \right) = \sum_{k} \pi_k N(x_n | \mu_k, \Sigma_k) \end{aligned}$$

• The "complete" likelihood

$$p(x_n, z_n^k = 1 | \mu, \Sigma) = p(z_n^k = 1 | \pi) p(x_n | z_n^k = 1, \mu, \Sigma) = \pi_k N(x_n | \mu_k, \Sigma_k)$$
$$p(x_n, z_n | \mu, \Sigma) = \prod_{k=1}^{n} \left[\pi_k N(x_n | \mu_k, \Sigma_k) \right]_{n}^{t_k}$$

But this is itself a random variable! Not good as objective function

© Eric Xing @ CMU, 2006-2011

24

How is EM derived?

• The complete log likelihood:

$$\ell(\mathbf{0}; D) = \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} | \pi) p(x_{n} | z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}} + \sum_{n} \log \prod_{k} N(x_{n}; \mu_{k}, \sigma)^{z_{n}^{k}}$$

$$= \sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k} - \sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{k})^{2} + C$$

The expected complete log likelihood

$$\begin{split} \left\langle \ell_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z}) \right\rangle &= \sum_{n} \left\langle \log \boldsymbol{p}(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \right\rangle_{\boldsymbol{p}(\boldsymbol{z} \mid \boldsymbol{x})} + \sum_{n} \left\langle \log \boldsymbol{p}(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \right\rangle_{\boldsymbol{p}(\boldsymbol{z} \mid \boldsymbol{x})} \\ &= \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle \log \boldsymbol{\pi}_{k} - \frac{1}{2} \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle \left((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log \left| \boldsymbol{\Sigma}_{k} \right| + \boldsymbol{\mathcal{C}} \right) \end{split}$$

© Eric Xing @ CMU, 2006-2011

E-step

• We maximize $\langle I_c(\mathbf{\theta}) \rangle$ iteratively using the following iterative procedure:

Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$\tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} = p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} \mathcal{N}(x_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} \mathcal{N}(x_n, | \mu_i^{(t)}, \Sigma_i^{(t)})}$$

Here we are essentially doing inference

© Eric Xing @ CMU, 2006-2011

M-step

- ullet We maximize $\langle {\it l}_c({f heta})
 angle$ iteratively using the following iterative procudure:
 - Maximization step: compute the parameters under current results of the expected value of the hidden variables

current results of the expected value of the hidden variable
$$\pi_{k}^{*} = \arg\max\langle I_{c}(\boldsymbol{\theta}) \rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_{k}} \langle I_{c}(\boldsymbol{\theta}) \rangle = 0, \forall k, \quad \text{s.t. } \sum_{k} \pi_{k} = 1$$
$$\Rightarrow \pi_{k}^{*} = \frac{\sum_{n} \langle \boldsymbol{z}_{n}^{k} \rangle_{q^{(r)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(r)}}{N} = \frac{\langle \boldsymbol{n}_{k} \rangle_{N}}{N}$$

$$\mu_{k}^{*} = \arg\max \left\langle I(\mathbf{0}) \right\rangle, \quad \Rightarrow \mu_{k}^{(r+1)} = \frac{\sum_{n} \tau_{n}^{k(r)} X_{n}}{\sum_{n} \tau_{n}^{k(r)}}$$

Fact:

$$\frac{\partial \log |\mathbf{A}^{-1}|}{\partial \mathbf{A}^{-1}} = \mathbf{A}^{T}$$

$$\frac{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^{T} \mathbf{A} \mathbf{x}} = \mathbf{x} \mathbf{x}^{T}$$

- $\boldsymbol{\Sigma}_{k}^{*} = \arg\max\left\langle \boldsymbol{/}(\boldsymbol{\theta})\right\rangle, \quad \Rightarrow \boldsymbol{\Sigma}_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (\boldsymbol{X}_{n} \boldsymbol{\mu}_{k}^{(t+1)}) (\boldsymbol{X}_{n} \boldsymbol{\mu}_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}}$

• This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics", 2011

Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

$$\boldsymbol{Z}_n^{(t)} = \arg\max_{\boldsymbol{k}} (\boldsymbol{X}_n - \boldsymbol{\mu}_k^{(t)})^T \boldsymbol{\Sigma}_k^{-1(t)} (\boldsymbol{X}_n - \boldsymbol{\mu}_k^{(t)})$$

• In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

$$\mu_k^{(t+1)} = \frac{\sum_n \delta(\boldsymbol{Z}_n^{(t)}, \boldsymbol{k}) \boldsymbol{X}_n}{\sum_n \delta(\boldsymbol{Z}_n^{(t)}, \boldsymbol{k})}$$

25

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$\ell_c(\theta; D) = \log \sum_z p(x, z \mid \theta) = \log \sum_z p(z \mid \theta_z) p(x \mid z, \theta_x)$$

is difficult!

What shall we do?

© Eric Xing @ CMU, 2006-2011

Complete & Incomplete Log Likelihoods

· Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s). If Z could be observed, then

$$\ell_{c}(\theta; \mathbf{x}, \mathbf{z}) \stackrel{\text{def}}{=} \log p(\mathbf{x}, \mathbf{z} \mid \theta)$$

- Usually, optimizing ∠() given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, ∠() is a random quantity, cannot be maximized directly.
- Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

$$\ell_c(\theta; \mathbf{x}) = \log p(\mathbf{x} \mid \theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta)$$

This objective won't decouple

© Eric Xing @ CMU, 2006-2011

27

Expected Complete Log Likelihood

• For **any** distribution q(z), define expected complete log likelihood:

$$\langle \ell_c(\theta; x, z) \rangle_q \stackrel{\text{def}}{=} \sum_z q(z \mid x, \theta) \log p(x, z \mid \theta)$$

- A deterministic function of θ
- Linear in ℓ_c() --- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$\ell(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \qquad \Rightarrow \qquad \ell(\theta; x) \geq \left\langle \ell_{c}(\theta; x, z) \right\rangle_{q} + H_{q}$$

© Eric Xing @ CMU, 2006-2011

Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy:

$$F(q,\theta) \stackrel{\text{def}}{=} \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)} \leq \ell(\theta;x)$$

- The EM algorithm is coordinate-ascent on *F*:
 - E-step:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t})$$

M-step:

$$\theta^{t+1} = \arg\max_{\theta} \mathcal{F}(\boldsymbol{q}^{t+1}, \theta^t)$$

Q(X) © Eric Xing @ CMU, 2006-2011

E-step: maximization of expected $\ell_{\rm c}$ w.r.t. q

• Claim:

$$q^{t+1} = \arg \max_{q} F(q, \theta^{t}) = p(z \mid x, \theta^{t})$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\ell(\theta,x) \ge F(q,\theta)$

$$F(p(z|x,\theta'),\theta') = \sum_{z} p(z|x,\theta') \log \frac{p(x,z|\theta')}{p(z|x,\theta')}$$
$$= \sum_{z} p(z|x,\theta') \log p(x|\theta')$$

 $= \log p(x | \theta^i) = \ell(\theta^i; x)$ • Can also show this result using variational calculus or the fact $\ell(\theta; x) - F(q, \theta) = KL(q || p(z | x, \theta))$

© Eric Xing @ CMU, 2006-2011

E-step ≡ plug in posterior expectation of latent variables

• Without loss of generality: assume that $p(x, z|\theta)$ is a generalized exponential family distribution:

$$p(x,z|\theta) = \frac{1}{Z(\theta)}h(x,z)\exp\left\{\sum_{i}\theta_{i}f_{i}(x,z)\right\}$$

- Special cases: if p(X|Z) are GLIMs, then $f_i(X,Z) = \eta_i^T(Z)\xi_i(X)$
- The expected complete log likelihood under $q^{t+1} = p(z \mid x, \theta^t)$ is

$$\left\langle \ell_{c}(\theta^{t}; \mathbf{X}, \mathbf{Z}) \right\rangle_{q^{t+1}} = \sum_{\mathbf{Z}} q(\mathbf{Z} \mid \mathbf{X}, \theta^{t}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta^{t}) - \mathcal{A}(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle f_{i}(\mathbf{X}, \mathbf{Z}) \right\rangle_{q(\mathbf{Z} \mid \mathbf{X}, \theta^{t})} - \mathcal{A}(\theta)$$

$$= \sum_{i} \theta_{i}^{t} \left\langle \eta_{i}(\mathbf{Z}) \right\rangle_{q(\mathbf{Z} \mid \mathbf{X}, \theta^{t})} \xi_{i}(\mathbf{X}) - \mathcal{A}(\theta)$$

© Eric Xing @ CMU, 2006-2011

31

M-step: maximization of expected $\ell_{\rm c}$ w.r.t. θ

• Note that the free energy breaks into two terms:

$$F(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle \ell_{c}(\theta;x,z) \rangle_{q} + \mathcal{H}_{q}$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \arg \max_{\theta} \left\langle \ell_c(\theta; \boldsymbol{x}, \boldsymbol{z}) \right\rangle_{q^{t+1}} = \arg \max_{\theta} \sum_{\boldsymbol{z}} q(\boldsymbol{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(x,z|\theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z|x,\theta)$.

© Eric Xing @ CMU, 2006-2011

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step: $q^{t+1} = \arg \max_{q} F(q, \theta^t)$ • M-step: $\theta^{t+1} = \arg \max_{\theta} F(q^{t+1}, \theta^t)$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

© Eric Xing @ CMU, 2006-2011

33

EM Variants

• Sparse EM:

Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step). Recall the IRLS step in the mixture of experts model.

© Eric Xing @ CMU, 2006-2011

A Report Card for EM

- Some good things about EM:
 - no learning rate (step-size) parameter
 - automatically enforces parameter constraints
 - very fast for low dimensions
 - each iteration guaranteed to improve likelihood
- Some bad things about EM:
 - can get stuck in local minima
 - can be slower than conjugate gradient (especially near convergence)
 - requires expensive inference step
 - is a maximum likelihood/MAP method

© Eric Xing @ CMU, 2006-2011