Machine Learning

10-701/15-781, Fall 2011
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Unobserved Variables

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...
e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models, con'd :
e A density model p(x) may be multi-modal.
e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs) ‘
|

e Consider a mixture of K Gaussian components:
e Zis alatent class indicator vector:

p(z,)=multi(z, :7) = [ 1(z, )"
k

e JXis a conditional Gaussian variable with a class-specific mean/covariance

pix, |z} =1,u,%) = T OXPE L (X, - 1) Z (%, - 1))

_ 1
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e The likelihood of a sample:
mixture component
mixture proportion
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Gaussian Mixture Models (GMMs) | 3¢

e Consider a mixture of K Gaussian components:

p(xn|ﬂ72) = Zk N[ g, Zy)
/&,\
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e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Learning mixture models
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Why is Learning Harder?

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms.

¢,(6,D) =log p(x,z|0) =log p(z|8,) +log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(6;D)=log > p(x,z|6)=log D> p(z|6,)p(x|z.86,)
Z z Z Z
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Gradient Learning for mixture selt
models o2

I
e We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:
£(0)=log p(x|0) =log > 7, p, (x|6;)
k
o _ 1 apk(x‘gk)
00~ p(x|9)zk:”* 00
~ 7, alog p, (X6,)
“Zpixloy U o
_ p.(x|6,) olog p, (x|6,) _ 04
LT i) o6, a0,
e In other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.
e Can pass this to a conjugate gradient routine.
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Parameter Constraints o

e Often we have constraints on the parameters, e.g. X7, =1, X
being symmetric positive definite (hence X, > 0).

e We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.

e For normalized weights, use the softmax transform:

e For covariance matrices, use the Cholesky decomposition:
>1=ATA
where A is upper diagonal with positive diagonal:
A =exp(4,)>0 A,=n; (j>/) A;=0(j</)
the parameters y; 4; 7,; € R are unconstrained.

e Usechainrule to compute ~ 0¢ 04

o' oA
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Identifiability o
I
e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.
e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.
e Hence we should be careful in trying to interpret the
“‘meaning” of latent variables.
pill'ﬂll'lt.‘[t?l' space
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Identifiability :
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Toward the EM algorithm

e E.g., A mixture of K Gaussians:

e Zis a latent class indicator vector
p(z,)=multi(z, : 7) = [ [(z, )"
k

e X s a conditional Gaussian variable with a class-specific
mean/covariance

1 R
p(x, 2y =1, 1,%) :Wexp{-%(xn - 1) 20 (%, _/'lk)}
e The likelihood of a sample:
PO | Z) =3, p(2* =1]7)p(x,| 2" =1, 41,%)
:zz"Hk((”k)z: N(x, :/lkvzk)Z: ): ZK”kN(XJyk!Ek)
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Toward the EM algorithm

e Recall MLE for completely observed data

Data log-likelihood
¢(0;D)=log [ Ip(z,.%,) =log [ ] p(z, | 7)p(X, | 2,, 11,0)

= 2og [Tz + Xlog TIN(%,:44,0)"
n k n k

= ZEZ: log 7, - ZEZkL(Xn'ﬂk)Z‘*’C
n k n k

n 252

e MLE Ty e =argmax . £(0;D),
ﬁk,MLE =argmax,, £(6;D)

anrfxn

= ,[‘k,MLE :W
G mie =argmax, £(8;D) n "

What if we do not know z,,?
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Expectation-Maximization (EM)
Algorithm
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Expectation-Maximization (EM)
Algorithm

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EM is an lterative algorithm with two linked steps:

e E-step: fill-in hidden values using inference, p(zx, &).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

o We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.
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o Start:
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop
e Foreach point n=1to N,
compute its cluster label:
t )T s-1(t t
20 =argmax(x, - 1) 5, (x, - ")
e For each cluster k=1:K
0]
(t+1) _ Zn 5(Ln 'k)x” Z(Hl)
ko= k
> 520 k)
w3 L RS RE 32, SR
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Expectation-Maximization .

e Start:

e "Guess" the centroid g, and coveriance 2, of each of the K clusters

e Loop

. I'1 . '..:l‘ - . L] -s .

-._. _.'-:. O . R
(a) (c) (d) (&)

L=6 . L=8 L=10 . L=12
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How is EM derived? :
e A mixture of K Gaussians:
e Zis alatent class indicator vector
) k
p(z,)=multi(z, :7)= [ [(z, )
k N
e JXis a conditional Gaussian variable with a class-specific mean/covariance
1
x|z =1 13)=———expr-i(x, - 1,) = (x, -
plx, | .5) e pEL0x, - ) = (X, - 1))
e The likelihood of a sample
P(x,|u.2) =3, Pz, =17)p(x|2, =1 . )
ZZank((”k)z: N(x, :yk,zk)*):ZkﬁkN(x,mk,zk)
e The “complete” likelihood
POzt =1 %) = p(z, =1 7) p(x,| 2, =1, 1, 2) = TN (X | g1, )
PO 2,0, D) = [T [mN (] 1, Z)F
k
But this is itself a random variable! Not good as objective function
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How is EM derived? :
e The complete log likelihood:
;D) =log [ Ip(z,.x,) =log[ ] p(z, | ) (X, | 2, 11,5)
n n
N

= Mog [ T + 2log TIN(x, i1, 0)"

n k n k
= 2 2zlogm, - 2 2k 3k (%, - 44 )° +C
k

n k - n

e The expected complete log likelihood

(€0:x,2)) = Zlog p(z, 7)) ., + 2log p(x, | 2, 1. %)) .

= XXz )logz, -2 T Xz )0x, - ) 5, - ) +loglz, +€)
n k n k
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E-step °
e We maximize</c (9)> iteratively using the following
iterative procedure:
N
— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., 2) given
current est. of the parameters (i.e., zand u).
t t t
LK) :<zk> = p(zF =1 x, 4, 5") = 2N (X 1" 25)
T\ 2N (x| 1,27
;
Here we are essentially doing inference
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M-step :

e We maximize</c (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under
current results of the expected value of the hidden variables

7, =argmax(/(8)), = 52(1.(0))=0,Vk, st X, =1
k

LA A S

3 ckx
w =argmax(/(8)), = "= W Fact:
nn Olog‘A’l‘
KO (e 0 (x, — )T oAt
x, =argmax(/(0)), = zyV=—n" " ol n Tk xAx

Zﬂ T,/’((f)

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their
corresponding "sufficiesthcxhal ShiCHoskor
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Compare: K-means c
I
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
e In the K-means “E-step” we do hard assignment:
247 =argmax(ie, ~ ") T (x, ~ )
e In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
,u(fﬂ) - zn 5(2,7(f),k)Xn
LY 80 k)
w3 vz :; ;: 2 M
. ;-.9 + . Wf " ) ::v‘ LI ..-.;.'3 + ' :-‘;:3 . ?.9 .
@) (@] [C] [E)] (€] m
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Theory underlying EM :

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(6;D)=log > p(x,z|0)=log > p(z]6,)p(x|z,6,)

is difficult!

e \What shall we do?
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Complete & Incomplete Log
Likelihoods

e Complete log likelihood
Let X'denote the observable variable(s), and Z denote the latent variable(s).
If Zcould be observed, then .
£ (0,x,z)=logp(x,z|0)

e Usually, optimizing () given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, 4() is arandom quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

4.(6;x)=log p(x|6) =logy" p(x.z|6)

e This objective won't decouple

Expected Complete Log
Likelihood '

e For any distribution ¢(2), define expected complete log likelihood:

def
(4(0;)(,2))(/ = g(z| x,6)log p(x,z|6)
A deterministic function cff 0
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(6;x)=log p(x|6)
~log ¥ p(x.216) | /

p(x,z|06)
= /s 2
oggt](zl/\’) 7z1%)
X,z |6
qu(zlx)log% = l(e;x)2<4(6’;x,2)>q+Hq
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Lower Bounds and Free Energy '
I
e For fixed data x, define a functional called the free energy:
= px.z10) _ .
F(qﬂ)—gq(zlx)log 721%) <£(6;x)
e The EM algorithm is coordinate-ascent on F:
e E-step: qm:arg m?XF(q,H’)
* M-step: 0™ =arg max /- (g",6")
Flas)
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E-step: maximization of expected | $:2:
gw.rt. g ot

e Claim: qr+1 —arg maxF(qﬁf) =p(Z|X,07‘)
q

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 48 x)>F¢,0)
F(p(z|x,6"),6" = 2|x,6") lo P(x.2]0°)
(p(zx,6"),0") Zp(\ )log e
= p(zx,6")log p(x|6")

=log p(x|6") = £(6";x)
e Can also show this result using variational calculus or the fact
that 4(9.x)- Flg.0)=KLlg | p(z ] x.0))
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E-step = plug in posterior
expectation of latent variables

e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:

1
0) = mh(x, z) exp{Z 0.f(x, z)}

px.z
e Special cases: if p(X]2) are GLIMs, then Flx,z)= 777’ (2)& (x)
e The expected complete log likelihood under g = p(z| x,6")

IS
(40"ix.2)) ., =X q(z]|x.0")log p(x,2|6") - A®)

= Ze}‘ (X 2), ey = AO)
p~GLIM .
= ’ZH/ <77/ (z)><](z|)(,9r)é:’ (X)_A(H)
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M-step: maximization of expected
4 w.rt. 6 4

e Note that the free energy breaks into two terms:
p(x.z|6)

g(z1x)
=>g(z|x)log p(x,z|60)-> g(z|x)logg(z | x)

F(g.0)=2 g(z|x)log

=(4(0:x.2)), +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to @ for fixed ¢
we only need to consider the first term:

F+1 . _
0" =arg mgx(fc(a, X, z))qh1 =arg mngq(z | x)log p(x,z|6)

e Under optimal ¢, this is equivalent to soIving% standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z|x,6).
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Summary: EM Algorithm

I
e A way of maximizing likelihood function for latent variable

models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
.« E-step: g =argmax F(g,6")
q9
o M-step: gt = arg mgle(q’”,@’)

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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EM Variants

e Sparse EM:

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions

each iteration guaranteed to improve likelihood

e Some bad things about EM:

can get stuck in local minima

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step

is @ maximum likelihood/MAP method
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