Machine Learning
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Clustering and partially
observable probabilistic models 4
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Unobserved Variables ) |2
@

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...
e itis a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Uni-modal and multi-modal
distributions oo
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Mixture Models, con'd 5
I
o A density model p(x) may be multi-modal.
e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs) | 3¢
e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector: i
p(z,)=multi(z, : ) = [1(z, )"

k
A
1
e Xis a conditional Gaussian variable with a class-specific mean/covarighg
v

1 ,
plx, |z =1, 1,%) = WEXP{'%(XH 1) L (X, '#k)}
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mixture component
mixture proportion

Pl =X, p* ~1mplxl 2 =1 u®) — ——
= Zz,, Hk((”k)z: N, 1, 2,7 ): D N 14, 2)

e The likelihood of a sample:
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Gaussian Mixture Models (GMMs) ‘
|

e Consider a mixture of K Gaussian components:

p(Xn|:u1E) = Zk T N[ g, Zy)
A

mixture proportion mixture component

Z
a2y
e/
e
= o \ae/
A
7 -
X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Why is Learning Harder?

|
e In fully observed iid settings, the log likelihood decomposes

into a sum of local terms.
4,(0;D) =log p(x,z|6) = log p(z|6,) +log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log > p(x,z|0)=log > p(z|6,)p(x|z,6,)
z : z

X, X,
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Gradient Learning for mixture
models '

e We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

£(0)=l0g p(x|6) =109 Y. 7,p, (X6,)
k

ol 1 op, (x|6,
_ Z”k P ( ‘ )

/ in 00 p(x|0)% 00
4’ N7 dlog p, (x|6,)
2 T2 p(x]0) Pk(x‘gk) 20
_ P (x|6,) 8log p (X(6,) o4
_;”k px10) - o0, _;Gaak
ZFxlba)tezy)

e In other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.
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Parameter Constraints 6
_ I
e Often we have constraints on the parameters, e.g. X,7,=1, X
being symmetric positive definite (hence X > 0).
e We can use constrained optimization, or we can
reparameterize in terms of unconstrained values. - 22"
e For normalized weights, use the softmax transform: N
e For covariance matrices, use the Cholesky decomposition:
TT=ATA
where A is upper diagonal with positive diagonal:
A, :exp(/i,)>0 A, =1y (J>1) Ay =0 (j<7)
the parameters y, 1, 7, € R are unconstrained.
e Usechainrule to compute ~ 0¢ 0¢
or' A’
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Identifiability :

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“‘meaning” of latent variables.

likelihood

pa rameter space
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Toward the EM algorithm :
e E.g., A mixture of K Gaussians:
e Zis a latent class indicator vector
N

p(z,) = multi(z, : 7) = [ 1(z,

e X is a conditional Gaussian variable with a class-specific
mean/covariance

p(x, 25 =1,14,5) = XpEL (%, - 1) S (%, - 1)}

1
— 5> €
(27[)m/2‘2k‘“2
e The likelihood of a sample:

PO E) =Y, p(Z* =1|7)p(x| 2" =1, 4,%)
=zank((”k)Z: N(X, :uk,Zk)zb)z zkﬁkN(X,luk,Zk)
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Toward the EM algorithm

e Recall MLE for completely observed data

e Data log-likelihood

04

£0:0)=log LTp(z, x,) =log ] ] p(z, I )p(x, 2,110:0) .
= Zlog Hyrk + Zlog HN(X s, o)
= ZZZ log 7, - ZZZHZ (%, -1, )2 +C
e MLE 7T e = argmax £(0; D),
| ) 22X,
My me =argmax,, £(0;D) = e :ﬁ
Gy e =argmax_ £(0; D) et
e What if we do not know z,?
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Expectation-Maximization (EM) 4
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Algorithm &
e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.
e Itis much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.
e EM is an lterative algorithm with two linked steps:
e E-step: fill-in hidden values using inference, p(zx, &).
e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data
e We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.
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K-means .
e Start:
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop
e Foreach pointn=1to N,
compute its cluster label:
M _ (H\T 5-1(1) (t)
Z,” =arg mlfiX‘(Xn — i) E (X — )
e For each cluster k=1:K
()
wn _ 24340, St
/uk - 5 (t) k K =
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Expectation-Maximization g
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e Start: ;
e "Guess" the centroid g, and coveriance 2, of each of the K clusters
e Loop M %Q@
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How is EM derived? .
e A mixture of K Gaussians:
e Zis a latent class indicator vector
3 K
p(z,)=multi(z, :7) = [1(z, )"
k
e JXis a conditional Gaussian variable with a class-specific mean/covariance N
1
x| zF=L13)=————expri(x, - 1) 2 (x, -
pix, |z} =1,13) e B pEL0x, - 1) = (X, - 1))
e The likelihood of a sample:
P(%|. D) =Y, p(z, =1 ) p(x| 2, =1 1, %)
:zznnk((”k)Z:N(Xn :lukvzk)z5 ):zkﬂkN(Xllﬂklzk)
e The “complete” likelihood
P(x, 2 =1u%) = p(z," =1 7)p(x.| 2, =1, 1, D) = M N (%] g1, Z,)
PO 2,0, D) = [ TImN (6 1, )
k
But this is itself a random variable! Not good as objective function
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How is EM derived?

e The complete log likelihood:

06

e E
(0:0)r10gTTn(z, ) =109 [ pCzs |04, 12,14:0)

N
= ZIog Hﬂ'k + Zlog HN(X ,uk,O')
- 2 Z, )09 7, - 2 k 12(Xn-,u )2+C
) E(:_) k P k
e The expected complete log likelihood
(¢.(0;x, z?ﬁ‘ 2(log p(z, | 7)) . Z(log P12, 105) 0
= Eﬂz >Iog;zk—f 22,<z >((X = 1) T (%, — )+ log[Z \+C’)
i(’é‘ “’F(Z» ) C’V\(l’&\ Jz)
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E-step

e We maximize</c (9)> iteratively using the following
iterative procedure:

-t

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., 2) given
current est. of the parameters (i.e., zand u).

)N( (7‘) E(f))
T:(f) < >m p(Z _llm@ Zﬂ(r)N(X |,Um 251‘))

el

Here we are essentially doing inference
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M-step °
e We maximize</c (9)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under N
current results of the expected value of the hidden variables
7, =argmax(/.(6)), = 2(1.(0))=0,Vk, st Xz, =1
k
k
- Bl Ty
2 :(f)X”
uy =argmax(/()), = uf*® :% Fact:
4 Tn alog‘A"‘ AT
. D L T S0 At
I, =argmax(/(®)), = =y =2 Z”r:(” 0;;’:;; i
This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their
corresponding "sufficient statistics")
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e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.

e In the K-means “E-step” we do hard assignment:
2,7 =argmax(x, — )" 20 (x, - ")

e In the K-means “M-step” we update the means as the
weighted sum of the data, bultpzolvg(She weights are 0 or 1:

v _ 2,97 k)X,
M TS 520 k)

- - - b 3 -
!.é *x "w x ‘.é -‘..'0'. -4’,", !.&
. + N . e .
St W St wE, SR, St
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@ (5] Tcy [G)] (e] m
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Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(6;D)=logy p(x,z|6)=logy" p(z16,)p(x] 2.6,)

is difficult!

e \What shall we do?

[ X X ]
Complete & Incomplete Log sels
Likelihoods '

e Complete log likelihood
Let X'denote the observable variable(s), and Zdenote the latent variable(s).
If Zcould be observed, then sof
4 (0,x,z)=log p(x,z|0)

e Usually, optimizing 4() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is arandom quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:
£.(0;x)=log p(x|6)=log > p(x,z|6)
z

e This objective won't decouple
Eric Xing © Eric Xing @ CMU, 2006-2011 28
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Expected Complete Log
Likelihood

|
e For any distribution ¢(2), define expected complete log likelihood:

def
(£6:%.2)), = T 9(z] x.0)log p(x, 2 |6)
A deterministic function of 0 My PQ#{W ua 7 *

Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality : M
I
£(6,x)=log p(x |8)
:IogZp(x,zle)
Xz \K‘(’U‘MU
=log g(z|x ) Px210) V ¢!
9(z|x) ?WCW ¢ - )qe)

>3 gz )log P20y 1Y) x)>{g 6% Dt
1(2)&%%5|)()zgu% SN %

~
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Lower Bounds and Free Energy :
e Forfixed d define a functional called the free energy:
g
0g2%:2(0 _
g(z|x) 09@ (@;x) N
e The EM algorithm is coordinate-ascent on F: - — 5
e E-step: qf+1 =arg maXF(q,Hr) /’\
— g
* M-step: " =arg max £ (¢",6")
=4
1 Floe)
-ﬂ
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E-step: maximization of expected
Lw.rt. g

e Claim: g =argmax F(g,0") = p(z| x,6")
g

e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).

e Proof (easy): this setting attains the bound 46,x)>F¢,6)
p(x,28")

p(z‘x,e‘)

=" p(zx,0")log p(x|6")

=log p(x]6") =£(0";x)
e Can also show this result using variational calculus or the fact
that ¢(0;x)-F(g.0)=KL(g| p(z| x.6))

F(p(7x,6").6) =Y p(zx.60") log
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E-step E.plug in posterlo.r HH
expectation of latent variables '
e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution: Z\(g
_ 1 =/
p(x,z|0) = Z(e)h(x,z)exp{ZH/ﬁ(x,z)} | /3(3()

o Special cases: if p(X]Z) are GLIMs, then f(x,2)=n] (2)&(x) <{ >f'(’t(¥)

e The expected complete log likelihood under g = p(z| x,0")
is

(£0"x.2)) ., = g(z]x,0")log p(x.20") - A0)

=Y 01 {F(x.2)), .~ AB)

p~GLIM

= 20/ (1(2)) o, &1 (X) = AO)
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M-step: maximization of expected
4L w.rt. 0

e Note that the free energy breaks into two terms:
p(x.z|0)

g(z|x)
=2 9(z|x)log p(x,z|0) -3 g(z| x)logg(z | x)

F(g.0)=> ¢(z|x)log

=(4(0:x,2)), +H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to &for fixed ¢
we only need to consider the first term:

F+1 _ . —
0" =arg mgax(l;(&, X, z))qM =arg mglxz;l(z | x)log p(x,z|6)

e Under optimal ¢*, this is equivalent to solvingza standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,6).

[ X X ]

[ X X X

ece’
Summary: EM Algorithm 4

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
e E-step: 7”1 =argmax F(q'ef)
g
o M-step: 0" =arg max £ (g".0")

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.
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EM Variants

I
e Sparse EM:
Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model.
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A Report Card for EM

e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood

e Some bad things about EM:
e can get stuck in local minima
e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step n
e is a maximum likelihood/MAP method = N IFCZ‘( X)
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