
1

Machine LearningMachine Learning
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Lecture 9, October  10, 2011

Reading: Chap. 9, C.B book
Eric Xing 1© Eric Xing @ CMU, 2006-2011

Poster data?
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Clustering and partially
observable probabilistic models
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Unobserved Variables
A variable can be unobserved (latent) because:

it is an imaginary quantity meant to provide some simplified and abstractive view g y q y p p
of the data generation process

e.g., speech recognition models, mixture models …

it is a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen, 
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Discrete latent variables can be used to partition/cluster data 
into sub-groups (mixture models, forthcoming).

Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc., later lectures).
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Uni-modal and multi-modal 
distributions
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Mixture Models
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Mixture Models, con'd
A density model p(x) may be multi-modal.
We may be able to model it as a mixture of uni-modalWe may be able to model it as a mixture of uni-modal 
distributions (e.g., Gaussians).
Each mode may correspond to a different sub-population 
(e.g., male and female).
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⇒
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

Z is a latent class indicator vector:
Z

X is a conditional Gaussian variable with a class-specific mean/covariance
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The likelihood of a sample:
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

∑ Σ=Σ
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This model can be used for unsupervised clustering.
This model (fit by AutoClass) has been used to discover new kinds of stars in 
astronomical data, etc.
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Learning mixture models
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Why is Learning Harder?
In fully observed iid settings, the log likelihood decomposes 
into a sum of local terms.

With latent variables, all the parameters become coupled 
together via marginalization
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Gradient Learning for mixture 
models

We can learn mixture densities using gradient descent on the 
log likelihood. The gradients are quite interesting:g g q g
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In other words, the gradient is the responsibility weighted sum 
of the individual log likelihood gradients.
Can pass this to a conjugate gradient routine.
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Parameter Constraints
Often we have constraints on the parameters, e.g. Σkπk = 1, Σ 
being symmetric positive definite (hence Σii > 0).g y p ( ii )
We can use constrained optimization, or we can 
reparameterize in terms of unconstrained values.

For normalized weights, use the softmax transform: 

For covariance matrices, use the Cholesky decomposition:

AAT=Σ−1
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where A is upper diagonal with positive diagonal:

the parameters γi, λi, ηij ∈ R are unconstrained.

Use chain rule to compute 
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Identifiability
A mixture model induces a multi-modal likelihood.
Hence gradient ascent can only find a local maximumHence gradient ascent can only find a local maximum.
Mixture models are unidentifiable, since we can always switch 
the hidden labels without affecting the likelihood.
Hence we should be careful in trying to interpret the 
“meaning” of latent variables.
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Identifiability

Eric Xing 15© Eric Xing @ CMU, 2006-2011

Toward the EM algorithm
E.g., A mixture of K Gaussians: Zn

Z is a latent class indicator vector

X is a conditional Gaussian variable with a class-specific 
mean/covariance

Xn
N
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The likelihood of a sample:
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Recall MLE for completely observed data

Toward the EM algorithm

zi

Data log-likelihood
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MLE

What if we do not know zn?
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Expectation-Maximization (EM) 
Algorithm
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Expectation-Maximization (EM) 
Algorithm

EM is an optimization strategy for objective functions that can 
be interpreted as likelihoods in the presence of missing data.p p g
It is much simpler than gradient methods:

No need to choose step size.
Enforces constraints automatically.
Calls inference and fully observed learning as subroutines.

EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden values using inference, p(z|x, θt).

Eric Xing

M-step: update parameters t+1 using standard MLE/MAP method applied to 
completed data

We will prove that this procedure monotonically improves (or 
leaves it unchanged). Thus it always converges to a local 
optimum of the likelihood.

19© Eric Xing @ CMU, 2006-2011

K-means
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters µk k

Loop
For each point n=1 to N,
compute its cluster label:

For each cluster k=1:K
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Expectation-Maximization
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters µk k

Loop

Eric Xing 21© Eric Xing @ CMU, 2006-2011

How is EM derived?
A mixture of K Gaussians:

Z is a latent class indicator vector
Zn

X is a conditional Gaussian variable with a class-specific mean/covariance

The likelihood of a sample:
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The “complete” likelihood
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How is EM derived?
The complete log likelihood: Zn

The expected complete log likelihood
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p p g
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We maximize           iteratively using the following               
iterative procedure:

)(θcl

E-step

Znp

─ Expectation step: computing the expected value of the 
sufficient statistics of the hidden variables (i.e., z) given 
current est. of the parameters (i.e., π and µ). 
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Here we are essentially doing inference
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We maximize           iteratively using the following               
iterative procudure:

)(θcl

M-step

Znp

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables
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This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Compare: K-means
The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.g
In the K-means “E-step” we do hard assignment:

In the K-means “M-step” we update the means as the 
weighted sum of the data, but now the weights are 0 or 1:
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Theory underlying EM
What are we doing?

Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

But we do not observe z, so computing 

Eric Xing

is difficult!

What shall we do?
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Complete & Incomplete Log 
Likelihoods

Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). X ( ), Z ( )
If Z could be observed, then

Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).
Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.
But given that Z is not observed, lc() is a random quantity, cannot be 
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maximized directly.

Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

This objective won't decouple 
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Expected Complete Log 
Likelihood
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For any distribution q(z), define expected complete log likelihood:
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A deterministic function of θ
Linear in lc() --- inherit its factorizabiility 
Does maximizing this surrogate yield a maximizer of the likelihood?

Jensen’s inequality
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Lower Bounds and Free Energy
For fixed data x, define a functional called the free energy:
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The EM algorithm is coordinate-ascent on F :
E-step:

M-step:
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E-step: maximization of expected 
lc w.r.t. q

Claim: 
),|(),(maxarg tt

q
t xzpqFq θθ ==+1

This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )
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Can also show this result using variational calculus or the fact 
that
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E-step ≡ plug in posterior 
expectation of latent variables

Without loss of generality: assume that p(x,z|θ) is a 
generalized exponential family distribution:g p y

Special cases: if p(X|Z) are GLIMs, then 

The expected complete log likelihood under                            
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M-step: maximization of expected 
lc w.r.t. θ

Note that the free energy breaks into two terms:
zxp∑ )|( θ

The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on θ, is the entropy.

Thus in the M-step maximizing with respect to θ for fixed q
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Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:

Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|θ), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,θ).
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Summary: EM Algorithm
A way of maximizing likelihood function for latent variable 
models. Finds MLE of parameters when the original (hard) p g ( )
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best 
guess (posterior) and updating the parameters based on this 
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guess:
E-step: 
M-step: 

In the M-step we optimize a lower bound on the likelihood. In 
the E-step we close the gap, making bound=likelihood.
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EM Variants
Sparse EM:
Do not re-compute exactly the posterior probability on eachDo not re-compute exactly the posterior probability on each 
data point under all models, because it is almost zero. Instead 
keep an “active list” which you update every once in a while.

Generalized (Incomplete) EM: 
It might be hard to find the ML parameters in the M-step, even 
given the completed data We can still make progress by

Eric Xing

given the completed data. We can still make progress by 
doing an M-step that improves the likelihood a bit (e.g. 
gradient step). Recall the IRLS step in the mixture of experts 
model.
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A Report Card for EM
Some good things about EM:

no learning rate (step-size) parameterg ( p ) p
automatically enforces parameter constraints
very fast for low dimensions
each iteration guaranteed to improve likelihood

Some bad things about EM:
can get stuck in local minima

b l th j t di t ( i ll )

Eric Xing

can be slower than conjugate gradient (especially near convergence)
requires expensive inference step
is a maximum likelihood/MAP method

36© Eric Xing @ CMU, 2006-2011


