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Generalizability of Learning o

e In machine learning it's really the generalization error that we
care about, but most learning algorithms fit their models to the
training set.

e Why should doing well on the training set tell us anything
about generalization error? Specifically, can we relate error on
to training set to generalization error?

e Are there conditions under which we can actually prove that
learning algorithms will work well?
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What General Laws
constrain Inductive Learning?

e Sample Complexity
e How many training examples are sufficient
to learn target concept?
e Computational Complexity
e Resources required to learn target concept?

e Want theory to relate:
e Training examples
Quantity
Quality m
How presented
e Complexity of hypothesis/concept space H
e Accuracy of approx to target concept ¢

e Probability of successful learning S
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Two Basic Competing Models

PAC framework Agnostic framework

Sample labels are No prior restriction on
consistent the sample labels
with some /2 in //

Learner’s hypothesis | The required upper

required to meet bound on the

absolute upper bound | hypothesis error is

on its error only relative (to the
best hypothesis in the
class)
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Protocol

I
e Given:
e set of examples X T -»> % -»E

e fixed (unknown) distribution D over X
e set of hypotheses H
e set of possible target concepts C

e Learner observes sample S = { ( x;, c(x;) ) }

e instances x; drawn from distr. D

e labeled by target conceptc € C
(Learner does NOT know c(.), D)

e Learner outputs h € H estimating c

e his evaluated by performance on subsequent instances drawn from D
e For now:

e C=H(soceH)

e Noise-free data

[ X X ]

[ X X X

ece’
True error of a hypothesis 4

Instance space X

Where ¢
and /r disagree

e Definition: The true error (denoted &g5(4)) of hypothesis / with respect
to target concept ¢ and distribution 2is the probability that / will
misclassify an instance drawn at random according to 2.

ep(h) = Proeple(x) # h(z)]
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Two notions of error o
I
e Training error (a.k.a., empirical risk or empirical error) of
hypothesis & with respect to target concept ¢
e How often h(x) # c(x) over training instance from §
A F1N T M f N 7 1 f A1 chqﬁ({!(f}?];\éh(:ﬂ))
€s(n) = Pryes|clx) # hix)) = 3]
e True error of (a.k.a., generalization error, test error)
hypothesis h with respect to ¢
e How often h(x) # c(x) over future random instances Can we bound
drew iid from 2 EADU?,)
in terms of
ep(h) = Praeple(x) # h(z))] és(h)
22
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The Union Bound :

e Lemma. (The union bound). Let A;A,, ..., A, be k different
events (that may not be independent). Then

P(A1UAsU...UAg) < P(A)) + P(As) + ...+ P(Ay)

e In probability theory, the union bound is usually stated as an axiom (and thus we
won't try to prove it), but it also makes intuitive sense: The probability of any one
of k events happening is at most the sums of the probabilities of the k different
events.
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Hoeffding inequality

I
e Lemma. (Hoeding inequality) Let Z,,...,Z, be m independent

and identically distributed (iid) random variables drawn from a
Bernoulli(¢) distribution, i.e., P(Z;= 1) =¢, and P(Z; = 0) = 1- ¢.

Let ¢ = (1/m) Y, Z: be the mean of these random variables,
and let any > 0 be fixed. Then

P(|l¢ — ¢ > 7) < 2exp(—2y*m)
e This lemma (which in learning theory is also called the Chernoff bound) says that
if we take ¢ — the average of m Bernoulli(¢ ) random variables — to be our

estimate of ¢ , then the probability of our being far from the true value is small, so
long as m is large.
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Version Space

e A hypothesis / is consistent with a set of training examples §
of target concept c if and only if 4(x)=c(x) for each training
example ( x;, c(x;) ) in S

Consistent(h,S) = h(z) = c(x),¥{(z,c(z)) € S

e The version space, VS, ¢, with respect to hypothesis space H
and training examples JS'is the subset of hypotheses from H
consistent with all training examples in §.

VSu.s ={h € H|Consistent(h,S)}
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Consistent Learner .
e Alearneris consistent if it outputs hypothesis that perfectly
fits the training data
e This is a quite reasonable learning strategy
e Every consistent learning outputs a hypothesis belonging to
the version space
e We want to know how such hypothesis generalizes
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Probably Approximately Correct

Goal:
PAC-Learner produces hypothesis / that
is approximately correct,
errp(h) = 0
with high probability
P(errph)~0) =~ 1

e Double “hedging"
e approximately
e probably

Need both!
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Exhausting the version space

Hypothesis space [

. error—3
error=1 r—4
r=.

. . error=2
aror=3 r=3

(if‘ = t.raining error, error = true E‘-l‘l‘Ol‘)

o Definition: The version space VS,, g is said to be s-exhausted with
respect to c and S, if every hypothesis h in VS, 5 has true error less
than & with respect to c and 2.

Vh € VSH“S, EDUZ) <€
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How many examples will e-
exhaust the VS '

Theorem: [Haussler, 1988].

e If the hypothesis space H is finite, and S is a sequence of m > 1
independent random examples of some target concept c, then for
ANY 0 < ¢ <1/2, the probability that the version space with respect
to H and S is not e-exhausted ( ) is less than

‘Hle—cm‘,

e This bounds the probability that any consistent learner will output a
hypothesis h with ¢(h) > ¢
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What it means

e [Haussler, 1988]: probability that the version space is not -
exhausted after m training examples is at most |H|e="

PT‘(Bh € H'.' s.t. (eT'T'OT'f,-aq;”(h) = U) A (8?"?"0?"“-“6(:‘1) > E) ) < IH|€_”””

Suppose we want this probability to be at most &
|H|e=<™ < §

1. How many training examples suffice?
1
m > =(In|H| +1In(1/4))
2. Iferror,,,(h) = 0 then with probability at least (1-0):
erroriue < = (In|H| 4 1In(1/6))

- m
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PAC Learnability

A learning algorithm is PAC learnable if it

e Requires no more than polynomial computation per training
example, and

e no more than polynomial number of samples

Theorem: conjunctions of Boolean literals is PAC learnable
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PAC-Learning

e Learner L can draw labeled instance (x, ¢(x)) in unit time, x € X of
length n drawn from distribution 2, labeled by target conceptc € C

Def'n: Learner L PAC-learns class C using hypothesis space H
if
1. for any target concept ¢ « C,
any distribution 2, any € such that 0 < e < 1/2, d such that0 <& < 1/2,
Lreturnsh e Hs.t.
w/ prob.>1-38, errp(h) <e
2. L's run-time (and hence, sample complexity)
is poly(|x|, size(c), 1/g, 1/3)

o Sufficient: 1
1. Only poly(...) training instances — |H| = 2po¥0 m 2 ; (ln‘H‘ + 111(1 / 5))
2. Only poly time / instance ...

OftenC=H
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Agnostic Learning :
So far, assumed c € H
Agnostic learning setting: don't assume c € H
e What do we want then?
e The hypothesis h that makes fewest errors on training data
e What is sample complexity in this case?
m > 5L (In|H|+1n(1/5))
derived from Hoeffding bounds:
Prlerror, (h) > errorg(h)+ €] < e 2’
. . . . . . . [ X X ]
Empirical Risk Minimization sels
Paradigm -

e Choose a Hypothesis Class H of subsets of X.
e Foraninput sample S, find some h in H that fits S "well".
e Foranew point x, predict a label according to its membership in h.

~

h = arg minpecpy €s(h)

e Example:
e Consider linear classification, and let hy(z) = 1{67z > 0}
Then H = {hy : hg(z) = 1{6Tx >0}, 8 € R"*'}

6 = arg ming és(hg)

e We think of ERM as the most "basic" learning algorithm, and it will be this algorithm
that we focus on in the remaining.

e In our study of learning theory, it will be useful to abstract away from the specific
parameterization of hypotheses and from issues such as whether we're using a linear

classier or an ANN © Eric Xing @ CMU, 2006-2011 20
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The Case of Finite H

o H={n, ..., h} consisting of k£ hypotheses.

e We would like to give guarantees on the generalization error
of A.

e First, we will show that é(%) is a reliable estimate of ¢(#) for all
h.

e Second, we will show that this implies an upper-bound on the
generalization error of 4.

[ X X ]

0000

HH
Misclassification Probability o

e The outcome of a binary classifier can be viewed as a
Bernoulli random variable Z: Z = 1{h;(x) # c(z)}

e Foreach sample: z; = 1{h;(x;) # c(z;)}
s _ ]_ m
é(hi) = m Zj:l Zj
e Hoeffding inequality
~ 2
P(le(hi) — €(hi)| > v) < 2exp(—27*m)
e This shows that, for our particular h;, training error will be close to generalization

error with high probability, assuming m is large.
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Uniform Convergence

e But we don't just want to guarantee that é(A;) will be close €(h;)
(with high probability) for just only one particular 4,. We want to
prove that this will be true simultaneously for all 7, € H

e For k hypothesis:
P(3h e H, |e(h;) —é(hi)| >~) = P(A U...UAg)

A
< Y P(A)
i=1

:‘.
= Z 2exp(—2v°m)
i=1

e This means: = 2kexp(—27°m)

P(=3h € H, [e(h;) — é(hi)] > 7)

P(Vh e H, [e(h;) — é(hi)] <~
= 1 —2kexp(—2v°m)

© Eric Xing @ CMU, 2006-2011 23

e In the discussion above, what we did was, for particular
values of m and vy, given a bound on the probability that:

forsome h, e H
|€(hi) — €(hi)| >~

e There are three quantities of interest here: m and y, and
probability of error; we can bound either one in terms of the
other two.
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Sample Complexity

e How many training examples we need in order make a guarantee?
P(3h e H, |e(h) —é(h)| >7) = 2kexp(—27y°m)

e We find that if 1 2k
m > 22 log 5

then with probability at least 1-5, we have that |e(h;) — é(h;)| <
forallh, e H

e The key property of the bound above is that the number of training
examples needed to make this guarantee is only logarithmic in %, the
number of hypotheses in H. This will be important later.

o000

0000

HH
Generalization Error Bound B

e Similarly, we can also hold m and ¢ fixed and solve for y in the
previous equation, and show [again, convince yourself that
this is right!] that with probability 1- 6 , we have that for all 7, e H

e(h) — e(h)| < /= log %

m

e Define h* = argmin,ey e(h) to be the best possible
hypothesis in H.

e(h) éh) +~
éh*) +
e(h*) + 2y

IA 1A TA

e If uniform convergence occurs, then the generalization error of e(f;__)is at most 2y
worse than the best possible hypothesis in H!
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Summary

Theorem. Let |H| = k&, and let any m, § be fixed. Then with probability at
least 1 — &, we have that

: : . 1 2k
g(h) < (mm:.{h)) +2 ﬂlog 5

r=A

Corollary. Let |H| = &, and let any 4,+ be fixed. Then for E(J?E:J <
mingen £(k) + 27 to hold with probability at least 1 — 4, it suffices that

i 1
m >z ——log—
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What if H is not finite? .
e Can’t use our result for infinite H
e Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!
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How do we characterize selt
“power”? ot
e Different machines have different amounts of “power”.
e Tradeoff between:
e More power: Can model more complex classifiers but might overfit.
e Less power: Not going to overfit, but restricted in what it can model
e How do we characterize the amount of power?
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The Vapnik-Chervonenkis . sels
Dimension : -

e Definition: The Vapnik-Chervonenkis dimension, VC(H), of
hypothesis space H defined over instance space X is the size
of the largest finite subset of X shattered by H . If arbitrarily
large finite sets of X can be shattered by H , then VC(H) = .

Instance space X

Definition:

© Eric Xing @ CMU, 2006-2011

Given a set S ={x(2), ...,
x(d)} of points x(i)i X, we say
that H shatters S if H can
realize any labeling on S.

30
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VC dimension: examples 5
Consider X = R2, want to learn ¢: X>{0,1}
e What is VC dimension of lines in a plane?
H={ ( (wx+b)>0 > y=1)}
®
]
° )
® °
@ ®
© Eric Xing @ CMU, 2006-2011 31
[ X X ]
0000
0000
[ X
[ X J
[ J
X X \ X X
X o) N X o
X5 X X, X
Tox 7« \ 1 o\\ T o
X Xy X, X,
1
o - o} e o}
~ X o X o]
X,| .~ xl\"“‘\““a X X
* X A (& ,11__‘(__)___
X, X, X, X -

e For any of the eight possible labeling of these points, we can find a linear classier
that obtains "zero training error" on them.
e Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter.
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e The VC dimension of H here is 3 even though there may be sets of size 3 that it
cannot shatter.
e under the definition of the VC dimension, in order to prove that VC(H) is at least
d, we need to show only that there's at least one set of size d that H can shatter.
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e Theorem Consider some set of m points in R". Choose any
one of the points as origin. Then the m points can be
shattered by oriented hyperplanes if and only if the position
vectors of the remaining points are linearly independent.

e Corollary: The VC dimension of the set of oriented
hyperplanes in R"is n+1.

Proof: we can always choose n + 1 points, and then choose one of the
points as origin, such that the position vectors of the remaining n points are
linearly independent, but can never choose n + 2 such points (since non +
1 vectors in R" can be linearly independent).
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The VC Dimension and the
Number of Parameters

e The VC dimension thus gives concreteness to the notion of
the capacity of a given set of h.

e Is it true that learning machines with many parameters would
have high VC dimension, while learning machines with few
parameters would have low VC dimension?

An infinite-VC function with just one parameter!

flz,a) = 0(sin(ax)), z,a€R TN TN T

where @is an indicator function f p EA
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An infinite-VC function with just
one parameter o

e You choose some number |, and present me with the task of finding |
points that can be shattered. | choose them to be

z;=10"" i=1,...,L

e You specify any labels you like:

Yi,Y2,- -5, ¥i € {—1,1}
e Then f(e) gives this labeling if | choose « to be

! ;

1 —y;)10°

a:::rr(l—FE —( g) )
i—1

e Thus the VC dimension of this machine is infinite.
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Sample Complexity from VC sece
. . see
Dimension .
. |
e How many randomly drawn examples suffice to e-exhaust
VS, s with probability at least (1 - 5)?
ie., to guarantee that any hypothesis that perfectly fits the training data is
probably (1-8) approximately (€) correct on testing data from the same
distribution
1
m>1(4log,(2/5)+8VC(H)log,(13/¢))
Compare to our earlier results based on |H|:
m > (In|H|+1In(1/ 6))
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What You Should Know .
e Sample complexity varies with the learning setting
e Learner actively queries trainer
e Examples provided at random
e Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error
e For ANY consistent learner (case where cin H)
e For ANY “best fit” hypothesis (agnostic learning, where perhaps ¢ not in H)
e VC dimension as measure of complexity of H
© Eric Xing @ CMU, 2006-2011 38

19



