Machine Learning

10-701/15-781, Fall 2011

(XY
Computational Learning Theory 0000
o000
e00
o0
®
O]
Reading: Chap. 5 CB
© Eric Xing @ CMU, 2006-2011 1
[ X X ]
[ X X X
’ [ X L1
_ / ::.
W - o™ :

© Eric Xing @ CMU, 2006-2011




Generalizability of Learning

e In machine learning it's really the generalization error that we
care about, but most learning algorithms fit their models to the
training set.

e Why should doing well on the training set tell us anything
about generalization error? Specifically, can we relate error on
to training set to generalization error?

e Are there conditions under which we can actually prove that
learning algorithms will work well?
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What General Laws se2e
constrain Inductive Learning? oo

e Sample Complexity

e How many training examples are sufficient
to learn target concept?

e Computational Complexity

e Resources required to learn target concept?

e Want theory to relate:
e Training examples
Quantity
Quality m
How presented
e Complexity of hypothesis/concept space H
e Accuracy of approx to target concept &
e Probability of successful learning )
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PAC framework Agnostic framework

Sample labels are No prior restriction on
consistent the sample labels

with some j] n

Learner’s hypothesis | The required upper

required to meet bound onthe
absolute upper bound | hypothesis error is
on its error only relative (to the
best hypothesis in the
&< | class)yIO
Protocol

I
e Given:
e set of examples X EEDER -> @ -> E

e fixed (unknown) distribution D over X
e set of hypotheses H

heH ~C

e set of possible target concepts C

e Learner observes sample S ={(x; c(x) )}

e instances x; drawn from distr. D

e labeled by target conceptc € C
(Learner does NOT know c(.), D)

e Learner outputs h € H estimating c
e his evaluated by performance on subsequent instances drawn from D

e For now:
e C=H(soceH) Cp
e Noise-free data
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True error of a hypothesis

Instance space X

Where ¢
and /r disagree

o Definition: The true error (denoted ¢&;(%)) of hypothesis / with respect
to target concept ¢ and distribution 2is the probability that / will
misclassify an instance drawn at random accordingto 2.

ep(h) = Preeple(x) # h(z))]
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HH
Two notions of error °e

° @g/erpér (a.k.a., empirical risk or empirical error) of
hypothesis 4 with respect to target concept c

e How often h(x) # c(x) over training instance from §

- S(e(x)#h(x))
és(h) = Pryesle(z) # h(z)] = 2ises 5

e True error of (a.k.a., generalization error, test error)
hypothesis h with respect to c

e How often h(x) # c(x) over future random instances Canfbound
drew iid from 2 €D h
in terms of
ep(h) = Proeple(z) # h(z)] és(h)
22
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The Union Bound 5
. o
e Lemma. (The union bound). Let A;A,, ..., A, be k different
events (that may not be independent). Then
P(AyUAsU...UAL) < P(A)) + P(A) + ...+ P(A)
e In probability theory, the union bound is usually stated as an axiom (and thus we
won't try to prove it), but it also makes intuitive sense: The probability of any one
of k events happening is at most the sums of the probabilities of the k different
events.
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Hoeffding inequality :

e Lemma. (Hoeffding inequality) Let Z,,...,Z,, be m independent
and identically distributed (iid) random variables drawn from a
Bernoulli(¢) distribution, i.e., P(Z,= 1) =¢, and P(Z,=0) = 1- ¢.

Let ¢ = (1/m) """, Z; be the mean of these random variables,
and let any »> 0 be fixed. Then
P(|¢ — 8| > ) < 2exp(—2y*m)
e This lemma (which in learning theory is also called the Chernoff bound) says that
if we take ¢ — the average of m Bernoulli(¢ ) random variables — to be our

estimate of ¢ , then the probability of our being far from the true value is small, so
long as m is large.
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Version Space

' I
e A hypothesis 7 is consistent with a set oﬂa'n.bg_examﬂzjs S
of target concept c if and only if 4(x)=c(x) for each trainin

example ( x;, c(x;) ) in S

Consistent(h,S) E  h(x) = c(z),V(z,c(z)) € S

e The version space, VS, ,, with respect to hypothesis space H
and training examples S'is the subset of hypotheses from H
consistent with all training examples in S.

VSu.s ={h € H|Consistent(h,S)}
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Consistent Learner

e Alearneris consistent if it outputs hypothesis that perfectly
fits the training data

e This is a quite reasonable learning strategy

e Every consistent learning outputs a hypothesis belonging to
the version space

e We want to know how such hypothesis generalizes

1.6 Vag
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Probably Approximately Correct '
Goal:
PAC-Learner produces hypothesis / that
is approximately correct,
errp(h) ~ 0
with high probability
P(errp(n)~0)~ 1
e Double “hedging"”
e approximately
e probably
Need both!
00
o000
o000
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Exhausting the version space .

Hypothesis space [

. | error—3
errer=,
r=.

. . error=2
aror=3 r=3

(if‘ = t.raining error, error = true E‘-l‘l‘Ol‘)

o Definition: The version space VS,, ¢ is said to be s-exhausted with
respect to c and S, if every hypothesis h in VS, 5 has true error less

than ¢ with respect to c and 2.
Vh € VSH‘S, ép(h) <€
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How many examples will e-
exhaust the VS

|
Theorem: [Haussler, 1988].

e If the hypothesis space H is finite, and S is a sequence of m > 1
independent random examples of some target concept c, then for
ANY 0 < ¢ <1/2, the probability that the version space with respect
to H and S is not e-exhausted ( ) is less than

s.v «{ gl lHIe_E'm,

e This bounds the probability that any consistent learner will output a
hypothesis h with ¢(h) > ¢
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What it means

|
e [Haussler, 1988]: probability that the version space is not ¢-

exhausted after m training examples is at most |H|e="

Pr(3h € H, s.t. (errorirqain(h) = 0) A (errorirue(h) > €) ) < [Hle™ ™

Suppose we want this probability to be at most &
|H|e—™ < 6
1. How many training examples suffice?
m > L(In|H| + In(1/6))
2. If error,,,,(h) = 0 then with probability at least (1-0):
errorirye < = (In|H| +In(1/6))
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PAC Learnability

A learning algorithm is PAC learnable if it

e Requires no more than polynomial computation per training
example, and

e no more than polynomial number of samples

Theorem: conjunctions of Boolean literals is PAC learnable
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PAC-Learning

e Learner L can draw labeled instance (x, ¢(x)) in unit time, x € X of
length n drawn from distribution 2, labeled by target conceptc € C

Def'n: Learner L PAC-learns class C using hypothesis space H
if
1. for any target concept ¢ « C,
any distribution 2, any ¢ such that 0 <& < 1/2, § suchthat0 <35 <1/2,
Lreturns h e Hs.t.
w/ prob.>1-3, errp(h)<e
2. L's run-time  (and hence, sample complexity)

is poly(|x|, size(c), 1/e, 1/)

e Sufficient:

~1L_QOnly poly(...) training instances — |H| = 2pol¥0 m 2 %(IH‘H‘ + 11’1(1/5))
—ZTOTﬂy'_}:v:b-t-ime/instance
[ X X ]
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HE
Conjunctions of Boolean Literals |:¢

e How many examples are sufficient to assure with probability at least
(1-9) that
he be L - 4o

(W] = §

every hin VS, ¢ satisfies eg(h) <e

e Use our theorem:

m =L (In|H|+1In(1/5))

e Suppose H contains conjunctions of constraints on up to n boolean
attributes (i.e., n boolean literals).

Then |H| = 3", and
m>1(In3" +1In(1/5))

or

m>L(nln3+In(1/5))
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Universal Concept Class

I
e Problem: each x € X defined by n boolean features. Let C be

the-sub-of all subsets of X.
e Question: is C PAC-learnable?
"
l [ l 2(.2 )

[CW ~ (2]
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Agnostic Learning R
£
So far, assumed ¢ € H T +

Agnostic learning setting: don't assume ¢ € H

e What do we want then?
e The hypothesis h that makes fewest errors on training data

e What is sample complexity in this case?
m > <L (In|H|+In(1/5)) /I
derived from Hoeffding bounds:
Prlerror, (h) > errorg(h)+ €] < e 2me
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Empirical Risk Minimization sece
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Paradigm :
S ——
. I
e Choose othesis Class H\of subsets of X.
e Foraninput sample S, find some h in H that fits S "well".
e Foranew point x, predict a label according to its membership in h.
h = argminycpy €s(h)
e Example:
e Consider linear classification, and let hg(z) = 1{67x > 0}
Then H = {hy : hg(z) = 1{6Tx >0}, 8 € R"*'}
0 = arg ming és(hy)

e We think of ERM as the most "basic" learning algorithm, and it will be this algorithm
that we focus on in the remaining.

e In our study of learning theory, it will be useful to abstract away from the specific
parameterization of hypotheses and from issues such as whether we're using a linear
classier or an ANN © Eric Xing @ CMU, 2006-2011 23
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e Case of FInite o

e H={n, ..., h} consisting of £ hypotheses.

¢ We would like to give guarantees on the generalization error
of 4.

e First, we will show that é(h) is a reliable estimate of (/) for all
h.

e Second, we will show that this implies an upper-bound on the
generalization error of 4.
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Misclassification Probability

e The outcome of a binary classifier can be viewed as a
Bernoulli random variable Z : Z = 1{h;(z) # c(z)}

e For each sample: Z; = 1{hi(z;) # c(z;)}
é(hi) = % Z;nzl Zj
e Hoeffding inequality
P(le(hi) = €(hi)| > 7) < 2exp(—27°m)

e This shows that, for our particular h;, training error will be close to generalization
error with high probability, assuming m is large.

[ X X ]

[ X X X

HH
Uniform Convergence -

e But we don't just want to guarantee that €(h;) will be close €(h;
(with high probability) for just only one particular 4,. We want to
prove that this will be true simultaneously for all 7, € H

e For k hypothesis:
P(3h e H, |e(h;) —é(hi)| >v) = P(AU...UA)

k
< Y P(A)
i=1
:\.
= Z 2 exp(—2y°m)
i=1

= CX)(—?’}‘@
(4y B

P(Vh € H, [e(h;) — é(hi)] <
= 1-2kexp(—27*m)

e This means:

P(—3h € H, |e(h;) —é(hi)] > )
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e In the discussion above, what we did was, for particular
values of m and vy, given a bound on the probability that:

for some h, e H
|€(hi) — €é(hi)| >~

e There are three quantities of interest here: m and vy, and
probability of error; we can bound either one in terms of the
other two.
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Sample Complexity

e How many training examples we need in order make a guarantee?

P(3he M, |e(h) —é(h)| >7) = 2kexp(—27°m)
e We find that if 1 2k
m > 52 log %
then with probability at least 1-J, we have that |e(h;) — é(h;)| < v
forallh, e H

e The key property of the bound above is that the number of training
examples needed to make this guarantee is only logarithmic in %, the
number of hypotheses in H. This will be important later.
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Generalization Error Bound

|
e Similarly, we can also hold m and ¢ fixed and solve for y in the

previous equation, and show [again, convince yourself that
this is right!] that with probability 1- § , we have that for all 4, € H

é(h) — e(h)| < /L log 2

e Define h* = argminy ey €(h) to be the best possible
hypothesis in H.
e(h) é(h) +~
é(h*) +~
e(h*) + 2y

IA A TA

e If uniform convergence occurs, then the generalization error of g_(f;__)is at most 2y
worse than the best possible hypothesis in H!
© Eric Xing @ CMU, 2006-2011 29
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/

Theorem. Let |H| = k, and let any m, d be fixed. Then with probability at
least 1 — &, we have that v

”

. ) ; 1 2k
e(h) < (ﬂl}l}c(h)) +2 %log 5 ﬁ L
— LT g
Corollary. Let |H| = k, and let any 6,4 be fixed. Then for £(h) <
minpey (k) + 27 to hold with probability at least 1 — 4, it suffices that

. 1 2k
m = PlOgT

1k
— 0=10gt),
(":gogﬁ)'
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What if H is not finite? )
e Can’t use our result for infinite H
e Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!
© Eric Xing @ CMU, 2006-2011 31
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How do we characterize sels
“power”? oo
e Different machines have different amounts of “power”.
e Tradeoff between:
e More power: Can model more complex classifiers but might overfit.
e Less power: Not going to overfit, but restricted in what it can model
e How do we characterize the amount of power?
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TheVapnik-Chervonenkis X;H,g
Dimension ) :

e Definition: The Vapnik-Chervonenkis dimension, VC(Hl), of
hypothesis space H defined over instance space X is the size
of the largest finite subset of X shattered by H . If arbitrarily
large finite sets of X can be shattered by H , then VC(H) = «.

Instance space X

Definition:

Given a set S ={x(1), ...,
x(d)} of points x()I X, we say
that H shatters S if H can
realize any labeling on S.
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VC dimension: examples

Consider X = R?, want to learn c: X>{0,1} /X_'L/X

e What is VC dimension of lines in a plane? i ‘f/
H={( (wx+b)>0 2> y=1)} - _
T
)
L J
° .
° .
@ ()
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e For any of the eight possible labeling of these points, we can find a linear classier
that obtains "zero training error" on them.

e Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter.
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e The VC dimension of H here is 3 even though there may be sets of size 3 that it
cannot shatter.

e under the definition of the VC dimension, in order to prove that VC(H) is at least
d, we need to show only that there's at least one set of size d that H can shatter.
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e Theorem Consider some set of m points in R". Choose any

one of the points as origin. Then the m points can be
shattered by oriented hyperplanes if and only if the position
vectors of the remaining points are linearly independent.

e Corollary: The VC dimension of thesset of oriented
hyperplanes in R"is n+1. b=/ J
n
Proof: we can always choose n + 1 points, e[l}nélt en choose one of the
points as origin, such that the position vectors of the remaining n points are
linearly independent, but can never choose n + 2 such points (since no n +
1 vectors in R" can be linearly independent).
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The VC Dimension and the
Number of Parameters ot

e The VC dimension thus gives concreteness to the notion of
the capacity of a given set of h.

e |[s it true that learning machines with many parameters would
have high VC dimension, while learning machines with few
parameters would have low VC dimension?

An infinite-VC function with just one parameter!

f(2,0) Sflsin(az), z.a € R VAN A

where%s an indicator function %
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An infinite-VC function with just
one parameter

e You choose some number |, and present me with the task of finding |

points that can be shattered. | choose them to be

z;=10"" i=1,...,L

e You specify any labels you like:

Y1, Y2, ...y v € {=1,1}

e Then f(«) gives this labeling if | choose « to be

1 ;

1 —9;)10°

a=mx(l+ E (+))
i=1

e Thus the VC dimension of this machine is infinite.
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Sample Complexity from VC sels
Dimension o
e How many randomly drawn examples suffice to e-exhaust
VS, s with probability at least (1 - 5)?
ie., to guarantee that any hypothesis that perfectly fits the training data is
probably (1-8) approximately (€) correct on testing data from the same
distribution
1
m>1(4log,(2/5)+8VC(H)log,(13/¢))
Compare to our earlier results based on |H|:
m> L (In|H|+1In(1/ 6))
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What You Should Know

Sample complexity varies with the learning setting

e Learner actively queries trainer

e Examples provided at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

e For ANY consistent learner (case where cin H)

e For ANY “best fit” hypothesis (agnostic learning, where perhaps ¢ not in H)

VC dimension as measure of complexity of H
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