Machine Learning

10-701/15-781, Fall 2011
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Machine learning for apartment sels
hunting -

e Now you've moved to
Pittsburgh!!

And you want to find the most
reasonably priced apartment
satisfying your needs:

square-ft., # of bedroom, distance to
campus ...

Living area (ft?) # bedroom Rent ($)

150 1
270 1.5
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The learning problem

e Features:
1 e Living area, distance to campus, #
o . bedroom ...
T | o Denote as x=[x/, 2 ... x']
e Target: Il
Li L ) e Rent “Ilr I
iving area
v 9 e Denoted asy
e Training set:
r . Training
e e xf =
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Inear negression o

e Assume thatY (target) is a linear function of X (features):

e eg. .
7=6,+0x" +0,x°

e let's assume a vacuous "feature" X°=1 (this is the intercept term, why?), and

define the feature vector to be:

e then we have the following general representation of the linear function:

e Our goal is to pick the optimal ¢ . How!

o We seek @ that minimize the following cost function:

IO =13 6.@)-1)
24
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The Least-Mean-Square (LMS) i
method ol
e The Cost Function:
JO)=33 K 0-1)
i=1
e Consider a gradient descent algorithm:
9" =0/ —aa‘ZjJ(e)t
[ X X J
The Least-Mean-Square (LMS) sels
method oo

¢ Now we have the following descent rule:

0" =0"+a) (y,-%'0)x/
i=1

e For a single training point, we have:

e This is known as the LMS update rule, or the Widrow-Hoff learning rule

e This is actually a "stochastic", "coordinate" descent algorithm
e This can be used as a on-line algorithm
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Geometric and Convergence of LMS

0" =0 +a(y,-x,'0)x,

Claim: when the step size (& satisfies certain condition, and when certain
other technical conditions are satisfied, LMS will converge to an “optimal

H I
region”. © Eric Xing @ CMU, 2006-2011
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Steepest Descent and LMS

e Steepest descent
e Note that:

T
0 0 n r
VJ=|—J,....—J| =- -X, @)X
4 |:661 aek :| ; (yn n ) n
. //.o/
9t+1 -0 +a X —X Tet X \ TS

e Thisis as a batch gradient descent algorithm
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The normal equations e
e Write the cost function in matrix form: L
J(@):%_le(xfe—y‘.)z x<| " % "
=2 (x0-5Y (x0-3) e
1
=%(HTXTXH—HTXTI/—yTX9+yTy) = yz
Y
e To minimize J(0), take derivative and set to zero:
V,J = %Vetr(eTXTXafﬁrXT -7 X0+3'7)
) =| X'X0=X"y
=E(Vgtr9 XTXO-2V {3 X0+V 117" 3) The normal equations
1 T T T =
:E(X X6+ X"X0-2X"5) U 1
=X"X0-X"5=0 9*:(XTX) X'y
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Some matrix derivatives s

e For f:R™ R, define:

2

04y, o4, s
V,f(4)= as ' as
o4, s 04, s
e Trace:
trA:iAﬁ , tra=a,
i=1

trdBC =trCAB =trBCA

e Some fact of matrix derivatives (without proof)

VtrdB=B" , V trABA'C=CAB+C"AB" ,
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Comments on the normal i
equation o

I
e In most situations of practical interest, the number of data

points N is larger than the dimensionality & of the input space
and the matrix X is of full column rank. If this condition holds,
then it is easy to verify that XX is necessarily invertible.

e The assumption that X”.X is invertible implies that it is positive
definite, thus the critical point we have found is a minimum.

e What if X has less than full column rank? - regularization
(later).
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Direct and Iterative methods

e Direct methods: we can achieve the solution in a single step
by solving the normal equation

e Using Gaussian elimination or QR decomposition, we converge in a finite number
of steps

e It can be infeasible when data are streaming in in real time, or of very large
amount

e Iterative methods: stochastic or steepest gradient
e Converging in a limiting sense
e But more attractive in large practical problems
e Caution is needed for deciding the learning rate o
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Convergence rate

e Theorem: the steepest descent equation algorithm
converge to the minimum of the cost characterized by
normal equation:

0> = (XTX)"'XxTy

gl dbo ) P Db

e A formal analysis of LMS need more math-mussels; in
practice, one can use a small o, or gradually decrease a.
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A Summary:

e LMS update rule
t+1 t T nt
0, =0 +a(y,-Xx, 0)x,,
e Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local
optimum
e Cons: convergence to optimum not always guaranteed

e Steepest descent .
t+1 ¢ T nt
0 =0"+a) (v,-Xx, )X,
i=1
e Pros: easy to implement, conceptﬁally clean, guaranteed convergence
e Cons: batch, often slow converging

e Normal equations

~1
* T T =
o =(x"x) X"y
e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (XTX)1, expensive, numerical issues
(e.g., matrix is singular ..), although there are ways to get around this ...
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Geometric Interpretation of LMS '
I
e The predictions on the training data are:
=x0 =x(X"X]'XTy ] ox
e Note that S
5oy=lx(xrx)'x-1f v, - %, -
and
X (5-3)=x"(x(x"x) x" -1}
= x(x"x) x" —Xf)y
=01
j’; is the orthogonal projection of )7 B _/§2
into the space spanned by the column
of X S
agm - - [ X X ]
Probabilistic Interpretation of sels
LMS -

e Let us assume that the target variable and the inputs are
related by the equation: '

T
yize X; T &

where ¢ is an error term of unmodeled effects or random noise

~

e Now assume that ¢ follows a Gaussian N(0,0), then we have: |

1 —0"™x)?)
p(yi |xi;6)=\/ﬂgexp(_ (y’ 20_2 l)

e By independence assumption:

j ' " (3, 0%,
L(g):Hp(yilxi;g):( ! jEXp[_Zi_l(lel)J

J2ro 25°
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Probabilistic Interpretation of
LMS, cont.

e Hence the log-likelihood is:

1

11w
Z(e)znlogma_?gzizl(yi_QTX;')Z

e Do you recognize the last term?
Yes it is: J(0) = ;Z(Xl_Tg_yi)Z
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!

sese
Case study: HH
predicting gene expression °

The genetic picture

causal SNPs

CG ACTGTACAATT

a univariate phenotype:

i.e., the expression intensity of
agene
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Association Mapping as Regression

Phenotype (BMI)

Genotype

Individual
1

Individual
2

Individual
N

25

4.8

4.7

Benign SN
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Ps Causal SNP

Association Mapping as Regression

Phenotype (BMI) Genotype

Individual 25 ..0..... 1..0....... 0...
1
Individual 4.8 S 1..1....... 1
2
Individual 4.7 2 2..1....... 0
N

2 ;¥

— SNPs with large
Yi Z xl’jﬂj |B)| are relevant
j=1
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Experimental setup

e Asthama dataset
e 543 individuals, genotyped at 34 SNPs
e Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
o X=543x34 matrix
e Y=Phenotype variable (continuous)

e A single phenotype was used for regression

e Implementation details
e lterative methods: Batch update and online update implemented.

e For both methods, step size a is chosen to be a small fixed value (106). This
choice is based on the data used for experiments.

e Both methods are only run to a maximum of 2000 epochs or until the change in
training MSE is less than 10-4

[ X X ]

[ X X X

s
Convergence Curves -

Log-log plot of training MSE versus epochs

810
s _Bat?h update e For the batch
e — Online update method, the training
£ ___Minimum MSE by MSE is initially large
E 108 normal equation || due to uninformed
c initialization
o
o
i e In the online update,
e 10° 4 N updates for every
= epoch reduces MSE
o to a much smaller
c value.
®
2 10° :
10° 10° 10°
Epochs
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The Learned Coefficients g
Stem plot of regression coefficents |i's
K L ’ g ;:me I'lDllll:a.l equali‘on.:'
- Using enline update
1.6l | Using batch update ||
% 0 | t I |
? =
"'50' 5 0 Regmss::n :oeﬂi:le:.!as index | e 3 %
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Multivariate Regression for Trait 3
Association Analysis o
Trait Genotype Association Strength
<
-
2.1 = 2 X
5 ?
[ [ ]
<
O
O
<
<
O
-
y = X X p
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Multivariate Regression for Trait sese
Association Analysis oo
Trait Genotype Association Strength
|_
C]
2.1 = < X
<
O
'_
<
¢ | |
8]
<
: .
0]
|_
[ = arg 111}11(y - X8y - Xp3)
Many non-zero associations:
Which SNPs are truly significa
eeoe
o000
eeo00
: s
Sparsity :

e One common assumption to make sparsity.

e Makes biological sense: each phenotype is likely to be

associated with a small number of SNPs, rather than all the

SNPs.

o Makes statistical sense: Learning is now feasible in high

dimensions with small sample size

© Eric Xing @ CMU, 2006-2011
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Sparsity: In a mathematical sense

e Consider least squares linear regression problem:
e Sparsity means most of the beta’s are zero.
B = argming[|Y — X3|?

subject to:
P

PRI AR e y

=1

e But this is not convex!!! Many local optima, computationally

intractable. N 7
[ X X J
. . HE
L1 Regularization (LASSO) 4
(Tibshirani, 1996) M

e A convex relaxation.

Constrained Form Lagrangian Form
8= argming| Y — X3[” 8= argming|[¥ — X8| + A 8]
subject to:
P
pICARSY
j=1

e Still enforces sparsity!
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Lasso for Reducing False Positives °
Trait Genotype Association Strength
<
|_
2.1 = 2 X |
o m
|_
<
(&)
2 Lasso
S o Penalty
|_

for sparsity

I
f* = argmin(y — X3 (y —XB) + A2 B
iS5 j=1

Many zero associations (sparse results),
what if there are multiple related traits

© Eric Xing @ CMU, 200626 29
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Ridge Regression vs Lasso s
mﬁm(xh/s —Y)T(XB-Y)+ Apen(B) = mﬁin J(8) + Apen(B)
Ridge Regression: Lasso:
pen(8) = ||8/3 pen(8) = |81
Bs with constant J(8)
(level sets of J(B))
Bs with B2 Bs with
constant constant
12 norm ; 11 norm
Lasso (I1 penalty) resultsdin sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates!
© Eric Xing @ CMU, 2006-2011 30
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Bayesian Interpretation

e Treat the distribution parameters @ also as a random variable
e The a posteriori distribution of 8 after seem the data is:

p(D)  [p(D|6)p(6)do

(0| D) = p(D19)p©®) _ p(D]6)p(6)

This is Bayes Rule

likelihood x prior

posterior = ——
marginal likelihood

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

© Eric Xing @ CMU, 2006-2011 31
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Regularized Least Squares and sels
MAP oo
What if (X™X) is not invertible ?
Buiap = arg maxlog p({(X;, ;) }i=1 16, o2)+log p(3)
L )] J
log Ii'kelihood log ;;rior
1) Gaussian Prior
8~ N(0,721) p(B) x e P P12
Bmap = arg mﬁin d (Y - X;8)°+ )\||6||% Ridge Regression
i=1
Closed form: HW constant(c?, 72)

| Prior belief that B is Gaussian with zero-mean biases solution to “small” |3|
© Eric Xing @ CMU, 2006-2071 32
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Regularized Least Squares and
MAP

What if (X"X) is not invertible ?

Buap = arg maxlog p({(X;, ¥p) iz 18, o2)+log p(3)
\ J oL )
Y
log likelihood log prior

I1) Laplace Prior

G; id Laplace(0,t) p(8;) x e 1Bil/t
o~ n 2 ) i
Bmap = arg mﬁin > (Y= XiB) + M8l Lasso
i=1
Closed form: HW constant(c?,t)

| Prior belief that B is Laplace with zero-mean biases solution to “small” B
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Beyond basic LR o2

e LR with non-linear basis functions

e Locally weighted linear regression

e Regression trees and Multilinear Interpolation

© Eric Xing @ CMU, 2006-2011 34
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000
HE
Non-linear functions: 5e
» - - o000
LR with non-linear basis sels
functions -

e LR does not mean we can only deal with linear relationships

e We are free to design (non-linear) features under LR
y=0,+Y" 0,4(x)=0"g(x)

where the ¢(x) are fixed basis functions (and we define ¢(x) = 1).

e Example: polynomial regression:

#(x) = [1, x,xz,x3]

o We will be concerned with estimating (distributions over) the
weights B and choosing the model order M.

© Eric Xing @ CMU, 2006-2011 36
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Basis functions 5
e There are many basis functions, e.g.:
e Polynomial ¢j (x) = X/
e Radial basis functions @, (x) = exp{— (x;/;j)z }
N
« Sigmoidal ¢ (x)= G[x_”fj
‘ s
e Splines, Fourier, Wavelets, etc
1 N [ 7 .:. | I| -
\:Ll_-u [ I'_ ! :'J (] sl f
" 5 us 1 ©EfcXing@CMW, 20062011 "y o3 o e 37
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1D and 2D RBFs :
e 1D RBF
N\ AN
% € [
yet = (x) + + Bydax)
o After fit:
vt = g () + + 0.5 5(x)
© Eric Xing @ CMU, 2006-2011 38
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Good and Bad RBFs o
o Agood 2D RBF  nissye
e Two bad 2D RBFs
o000
0000
s
Overfitting and underfitting o

Vo

y=6,+6x )/:(90-1-191x+(92x2

© Eric Xing @ CMU, 2006-2011
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Bias and variance &
I
e We define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say,
infinitely) large training set.
e By fitting "spurious" patterns in the training set, we might
again obtain a model with large generalization error. In this
case, we say the model has large variance.
b ;
— ] 4 _
| 1t \
) I'\,\/ I'\l
| :[ —t
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Locally weighted linear -
e
[ ]

regression

e The algorithm:
R 1 : Y
Instead of minimizing JO) == To—v)? . ]
0 =52%/0-7) ‘ :

now we fit 8 to minimize J(6) =%Zw‘- (X, 0-y,)

i=1

2
Where do w;'s come from? y, = exp(— (Xiz_:() ]
T

where x is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on) training
examples that are close to the query point (than those that are
further away from the query)

© Eric Xing @ CMU, 2006-2011 42
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Parametric vs. non-parametric

|
e Locally weighted linear regression is the second example we

are running into of a non-parametric algorithm. (what is the
first?)

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.

e In contrast, to make predictions using locally weighted linear regression, we need
to keep the entire training set around.

e The term "non-parametric” (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.

[ X X ]

[ X X X

HH
Robust Regression -

e The best fit from a quadratic e But this is probably better ...
regression

How can we do this?

© Eric Xing @ CMU, 2006-2011 44
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LOESS-based Robust Regression

I
e Remember what we do in "locally weighted linear regression"?

- we "score" each point for its impotence

e Now we score each point according to its "fitness"

‘You are a very good |
datapaint.

-
You are not too
shabby,

(Courtesy to Andrgy Moor,

[ X X ]
0000
0000
: e
Robust regression :
e Fork=1toR...
o Let (x,,y,) be the kth datapoint N
e Let st be predicted value of y, /...v’-' ’
o Letw, be a weight for data point & that is large if ! '1,-/
the data point fits well and small if it fits badly: i y
X
w, =gl — yE)?)
e Then redo the regression using weighted data points.
e Repeat whole thing until converged!
© Eric Xing @ CMU, 2006-2011 46
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L] mgm - ...
Robust regression—probabilistic | $:2:
interpretation '
e What regular regression does:
Assume y, was originally generated using the following recipe:
v, =0"x, +N(0,5°%)
Computational task is to find the Maximum Likelihood
estimation of 6
Ll mgm - '..
Robust regression—probabilistic | 32:
interpretation o

e What LOESS robust regression does:

Assume y, was originally generated using the following recipe:

with probability p:  y =6"x, + N(0,c?)

but otherwise v, ~N(u, Ofuge)

Computational task is to find the Maximum Likelihood
estimates of 6, p, x and oy,,ge.

e The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an
instance of the famous E.M. algorithm

© Eric Xing @ CMU, 2006-2011 48
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Regression Tree

e Decision tree for regression

Gender | Rich? | Num. # travel | Age
Children | per yr. Gender?
No 2 5 38
Female Male
M No 0 2 25
M Yes 1 0 72
Predicted age=39 ‘ ’ Predicted age=36

© Eric Xing @ CMU, 2006-2011

49

A conceptual picture

e Assuming regular regression trees, can you sketch a graph of

the fitted function y*(x) over this diagram?

x—b

© Eric Xing @ CMU, 2006-2011
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How about this one?

e Multilinear Interpolation

e We wanted to create a continuous and piecewise linear fit to
the data
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Take home message

e Gradient descent
e On-line
e Batch

e Normal equations
e Equivalence of LMS and MLE

e LR does not mean fitting linear relations, but linear
combination or basis functions (that can be non-linear)

e Weighting points by importance versus by fitness
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