Machine Learning

10-701/15-781, Fall 2011
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e Homework 1 out today! Save at least 10 hours for it.

e About project

e Midterm and final
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Generative vs. Discriminative sece
classifiers oo
e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)
e Generative:
e Modeling the joint distribution
of all data
e Discriminative: S i
e Modeling only points . \
at the boundar J’
BEERVARY
. . [ X X J
Learning Generative and i
Discriminative Classifiers oo

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers (e.qg., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l
e Estimate parameters of P(Y|X) directly from training data
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Suppose you know the following

e Class-specific Dist.: P(X|Y)
i p(X|Y.=1)
= Py(X; iy, Zy) Bayes classifier:

o ) Abnormal P(Y‘X) — P(X|Y)P(Y)
P(X)
p(X 1Y =2)
=P, (X 1z, Z,)
e Class prior (i.e., "weight"): P(Y)
e This is a generative model of the data!
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Optimal classification :

e Theorem: Bayes classifier is optimal!

e Thatis

errorirue(RBayes)) < errorirue(h), Vh(x)

e How to learn a Bayes classifier?
e Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k
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Learning Bayes Classifier

e Training data (discrete case):

X Y
\/ N\

Sky Temp Humid Wind Water Forecst EnjoySpt
[Sunny Warm Normal Strong Warm Same Yes |
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

e Learning = estimating P(X|Y), and P(Y)

o Classification = using Bayes rule to calculate P(Y | X..,)
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Parameter learning from iid data: |3
The Maximum Likelihood Est. -

e Goal: estimate distribution parameters 8 from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

D={x; ..., X}

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L() = P(x X5,..., Xy 6)
=P(X;0)P(X,;0),...,P(xy;6)
=[1,.P(x;6)

3. pick the setting of parameters most likely to have generated the data we saw:

0" =arg max L(¢) =argmaxlogL(0)




is i - a2,
How hard is it to learn the optimal | s32:
00
HY o0
classifier? :
I
e How do we represent these? How many parameters?
o Prior, P(Y): WaN
Suppose Yis Composed of k classes Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm  Same Yes
Sunny Warm High Strong Warm  Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm  High  Strong Cool Change Yes
e Likelihood, P(X]Y):
Suppose X is composed of n binary features
e Complex model — High variance with limited data!!!
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Gaussian Discriminative Analysis |

e learning f: X - Y, where

e Xis a vector of real-valued features, X,= < X.1,...X," >

e Yis an indicator vector

e What does that imply about the form of P(Y|X)?

e The joint probability of a datum and its label is:
Py Yy =1 ,0) = p(yp =1)x P(X, | Yy =1, 4, %)

1 - ~ N
=7 WGXP{'%(M - i) (X, 'ﬂk)}

e Given a datum x,, we predict its label using the conditional probability of the label
given the datum:

1 - . .
I, WGXP{'%(XH - 1) (X, 'ﬂk)}

POy =11%,,4,7) = :
zﬂ-k' WeXP{'%(Xn -14) 27X, _ﬁk')}
=
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Conditional Independence

e Xis conditionally independent of Y given Z, if the probability
distribution governing X is independent of the value of Y, given
the value of Z

Vi, 7, k)P(X =ilY =j,Z=k) = P(X =i|Z = k)

Which we often write

P(X|Y,2)=P(X|2)

e eg,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
e Equivalent to:

P(X,Y | Z)=P(X | 2)P(Y | Z)
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The Naive Bayes assumption :
e Naive Bayes assumption:
e Features are conditionally independent given class:
P(X1,X2lY) = P(X1|X2,Y)P(X2|Y)
= P(X1]Y)P(XolY)
e More generally:
P(X1.X"Y) =T P(X"|Y)
/)
Yo
e How many parameters now? ////\//xg\\\\
e Suppose X is composed of m binary features (3‘{1\3 (}“’%} (/}@5 (\/}ZD
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The Naive Bayes Classifier

e Given:
e Prior P(Y)
e m conditionally independent features X given the class Y
e For each X, we have likelihood P(X,|Y)

e Decision rule:

v'=hyp(x) = argmax P(y)P(z',....2™|y)

= argmax P(y) H P(z'y)

e If assumption holds, NB is optimal classifier!
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The A Gaussian Discriminative
Naive Bayes Classifier -

e \When X is multivariate-Gaussian vector:

e The joint probability of a datum and it label is:

-t

P(Xy, Yo =11, Z) = Py =D x p(X, | Yy =1, 2. %)

1 . _ -
=7 WEXF’{‘%(M - i) E(x, 'Nk)}

e The naive Bayes simplification
(X, Yo =1l 4,0) = plys =Dx[ [ p(x3 lys =L pl,0) %
i
LY @ @ @
=mn]] ! exp]- 1 Xo~
‘ i mo—kj ‘ool
o More generally:  p(X,, Y, |7,7) = p(y, | 7)< [ [ p(x} | ,.7)

j=1

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution E
I
e Understanding the predictive distribution
_ K=1,x, | i,2, 7 7N, | e, 2
p(y:=1|Xn,,u,2,ﬂ')=p(y JIu ): k ( |:uk k) *
p(X, [ 4,%) Zkvﬂk'N(Xn’l M Zy)
e Under naive Bayes assumption:
7 exp{—zj[;[xd;ﬂkjj ~log o —C]}
P(Yy =1l %, i, 2, 7) = J_k ~ **
> EXP{_ZI{;(W} —log ;. —C}}
e Fortwo class (i.e., K=2), and when the two classes haves the same
variance, ** turns out to be a logistic function
p(yr11 :1|Xn) = ! !
1+
_ 1
1+
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The decision boundary °

e The predictive distribution

1 1

M _ = -0"x,
1+exp{—2€jxn’ —00} lre

j=1

p(ys =1Ix,) =

e The Bayes decision rule:

p(y? =1|x,) e’ '

1+e7 )

e For multiple class (i.e., K>2), * correspond to a softmax function

"9kT Xn

e

—_
Z e—Hj Xn

j
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Summary:
The Naive Bayes Algorithm

e Train Naive Bayes (examples)
o for each* value y,
o estimate m = P(Y = yi)
o for each value x; of each attribute X;

e estimate 0:jn = P(Xi — -J:.;_J-|Y =)

e Classify (X

new)

e

Y™ — argmax P(Y = y;.) H P(X' = x|V = yp)
i

new
Yt — arg max g H Oijr

13
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Generative vs. Discriminative
Classifiers

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal C X, D

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers: TS
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! 0

e Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2011 18




Logistic regression (sigmoid
classifier)

e The condition distribution: a Bernoulli

p(Y]X) = ()’ A= u())™ . R

where x is a logistic function v /

u(x) =

T o T e
1+e?*

T
e We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y|x) is
an exponential family function, more specifically, a
generalized linear model (see future lectures ...)

© Eric Xing @ CMU, 2006-2011

Training Logistic Regression:
MCLE -

e Estimate parameters 6=<6,, 6,, ... ,> to maximize the
conditional likelihood of training data

e Trainingdata D= {(z1,11).....,(zn.yn)}

A.'

e Data likelihood = [ [ P(x:, i 6)
i=1

)'\"

e Data conditional likelihood = | [ P(xilyi; 0)

i=1
6 = arg max In H P(y;|zi;0)

© Eric Xing @ CMU, 2006-2011
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Expressing Conditional Log 3
. - ::.
Likelihood o
|
1(0) = lnHP(ydmz—; 0) = Zln P(yi|z;;0)
i i
- . 1
e Recall the logistic function:  p = 1
and conditional likelihood: P(y|z) = pu(x)¥(1 — p(x))*~
(&) = Z In P(y;|e;: 8) = Z yi lnu(x;) + (1 — yi) In(1 — p(ay))
= Zy; In I i(}:lf} +In(1 — p(xi))
= Z yif Tz — 072 + In(1 + (=_”T"")
= S (- 10Tz +In(1 + 70" )
©J.Eric Xing @ CMU, 2006-2011 21
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Maximizing Conditional Log sels
Likelihood o2
e The objective:
(0) = In][P(yilxi:0)
= Z(fh —1)0'z; + In(1 + c_ﬂT‘“")
e Good news: /() is concave function of 4
e Bad news: no closed-form solution to maximize /(6)
© Eric Xing @ CMU, 2006-2011 22
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Gradient Ascent e
I
10) = WnJ]P(ylei:0)
= Z(y,- — 18"z +In(1 + (E_GT"") = Z(yi —1)0Tz; — Inpu(87x;)
e Property of sigmoid function:
_ ! i _
h= e o~ HA—n)
e The gradient:
o)
20;
The gradient ascent algorithm iterate until change < ¢
Foralli,  6; —0;+n) (v — P(y; = O|z;;0))a]
repeat ‘
[ X X ]
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The Newton’s method :

e Finding a zero of a function

f(0")

it =g —
f(0°)

© Eric Xing @ CMU, 2006-2011
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The Newton’s method (con’d)

e To maximize the conditional likelihood I(6):

10) = Z{’U: —1)0Tz; + In(1 + (F”T""*')

since | is convex, we need to find & where I’(¢%)=0 !

e So we can perform the following iteration:

I'(0")
l”(@t)

gt = 0" +

© Eric Xing @ CMU, 2006-2011 25

The Newton-Raphson method

e In LR the @is vector-valued, thus we need the following
generalization:

o+ = 0! + H™'V (0"

e Vs the gradient operator over the function

e H is known as the Hessian of the function

© Eric Xing @ CMU, 2006-2011 26
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The Newton-Raphson method '
I
e In LR the #is vector-valued, thus we need the following
generalization:
ot = 0t + H-'V el (6"
e V is the gradient operator over the function
Vol(0) = Z(?}f —u;)r; = X' (y —u)
e His known as the Hessian of the function
H=VyVol(0) = ui(l—u)wix] = X"RX
where ;R,-.:- = u; (1 — u;)
. . [ X X ]
lterative reweighed least squares | 3:2:
(IRLS) 2

e Recall in the least square est. in linear regression, we have:
h=(XTX)"'XTy

which can also derived from Newton-Raphson

e Now for logistic regression:
o'tt = 0"+ H 'V l(0Y)
o' — (XTRX)"'XT(u—-1y)
= (XTRX) YXTRX#' — XT(u-y)}
= (X'RX)"'X"Rz

© Eric Xing @ CMU, 2006-2011 28
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Convergence curves

[ X X J
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IRLS .
I
e Recall in the least square est. in linear regression, we have:
9= (XTX)"'XTy
which can also derived from Newton-Raphson
e Now for logistic regression:
gt (XTRX)"'XTRz
where z=X#"-R '(u-y)
and R = u; (1 — ;)
[ X X ]
[ X X X
[ X L1
[ XN
[ X J
[ ]
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alt.atheism
VS.
comp.graphics

VS.

Legend: - X-axis: Iteration #; Y-axis: error
- In each figure, red for IRLS and blue for gradient descent

S Erie Xing @ M, 200-20b8

comp.windows.x
VS.
rec.motorcycles
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Logistic regression: practical
Issues

I
¢ NR (IRLS) takes O(N+d?®) per iteration, where N= number of
training cases and o= dimension of input x, but converge in
fewer iterations

e Quasi-Newton methods, that approximate the Hessian, work
faster.

e Conjugate gradient takes O(Nd) per iteration, and usually
works best in practice.

e Stochastic gradient descent can also be used if Nis large c.f.
perceptron rule:

© Eric Xing @ CMU, 2006-2011 31

Case Study: Text classification

e Classify e-mails
e Y ={Spam,NotSpam}
e Classify news articles

e Y ={what is the topic of the article?}

e Classify webpages

e Y = {Student, professor, project, ...}

= I
e What about the features X? gé/%l A
e The text!

© Eric Xing @ CMU, 2006-2011 32
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- H 0000
Features X are entire document — X! e
- - - . .
for it word in article °
|
e s aardvark 0
Corporate Structure
TOTAL'S Staay about 2
Upatigam 5irategy
S L e al 2
s o |— | Africa 1
-
o
fa all about the apple 0
compan .
pany anxious 0
i3
At TOTAL, we draw our greatest strength from our gaS 1
fast grovang oil ancd gas seserees Our stralegic erphasis
on natural gag provides a strong posiion in a rapedhy
spunding merkst
i oil 1
Cr expandmg refnng and marketng operatons m Ana
and the Mediterranean i complement already solid
positons m Eurepe, Afnea, and the 15,
Cr growing specialty chemicals sector adds balance and Zaire 0
profil Lo the core cuergy busmiess
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Bag of words model :

e Typical additional assumption — Position in document
doesn’t matter: P(X'=x/|Y=y) = P(Xk=x|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!

LengthDoc _ LengthV ol
P) I PG o P J[ Py
i=1 k=1

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.

© Eric Xing @ CMU, 2006-2011 34
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Bag of words model s
I
e Typical additional assumption — Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!
LengthDoc _ LengthV ol
P(y) I PGy o Py [[ Pk
=1 k=1
in is lecture lecture next over person remember room
sitting the the the to to up wake when you
© Eric Xing @ CMU, 2006-2011 35
esss
NB with Bag of Words for text sese
classification o

e Learning phase:
e Prior P(Y)
Count how many documents you have from each topic (+ prior)
e P(XY)

For each topic, count how many times you saw word in documents of this
topic (+ prior)

e Test phase:

e For each document X,

Use naive Bayes decision rule

LengthDoc

hyp(xnew) = argmaxP(y) J[  P(ehewlv)
i=1

© Eric Xing @ CMU, 2006-2011 36
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Back to our 20 NG Case study s

[ ] Dataset CUmp.gIE.lp;uCE- . rec.autos sci.crvpt
comp.Ds-.rrllbs—\\m ;“;.ﬂ-nsc rec motorcycles sci electronics

e 20 News GrOUpS (20 ClasseS) ccmp.5§s:1 m.pt}:{ ﬁ; T\are rec_sport baseball scimed

Comp.$YS mac hardware rec sport hockey sci.space

e 61,118 words, 18,774 documents comp.windows x
talk politics.misc | talk religion misc
misc forsale talk politics guns alt atheism
talke politics mideast soc religion christian

e Experiment:
e Solve only a two-class subset: 1 vs 2.
e 1768 instances, 61188 features.
e Use dimensionality reduction on the data (SVD).
e Use 90% as training set, 10% as test set.
e Test prediction error used as accuracy measure.

2: I{ predict, — true label)

iclest set

Accwracy =
a“r # of test samples

© Eric Xing @ CMU, 2006-2011 37
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o000
000
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Results: Binary Classes :
Vs.
A ;. altatheism
ccuracy vs. B I E—
osk comp.graphics T R
I _2hal
nglk T P |
07t _
06} _
05l \ comp.windows.x |
Vs.

04r rec.motorcycles R
03t .
02t .
01k .

b .. . . . . . ITraining Ratio
0 01 02 03 04 05 06 0F 08 08 1
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Results: Multiple Classes

1
AccuracyDg

0.

07

0B

[IE=3

0.4

03

0z

0.1

5-out-0f-20 classes

)

-

2]

All 20 classes

© Erie Xing @ MU, 2606-2008

1Training Ratio
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NB vs. LR

e Versus training size

0.07
0.06
0.05
0.04’

0.03

Prediction error

0.02f

0.01

| ==-Training NB

| ~=-Training Log Reg
—+—Test NB

| ——Test Log Reg

% oz

0.4 0.6 0.8 1.0 0 0.2 0.4 0.6

Fraction of train set used for training

© Eric Xing @ CMU, 2006-2011

» 30 features.
« Afixed test set

» Training set varied
from 10% to 100%
of the training set
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NB vs. LR

e Versus model size

0.07 T T T T T T T T
-=-Training NB
-¢-Training Log Reg
0.0
& —+—Test NB
——Test Log Reg
0.05
8
© 0.04
c
ed
k4
3 0.03
P
o
0.02
P,
0.01

5 10 15 20 25 30 35 40 45 50
Number of features used

© Eric Xing @ CMU, 2006-2011

Number of

dimensions of the
data varied from 5
to 50 in steps of 5

The features were
chosen in
decreasing order
of their singular
values

90% versus 10%
split on training
and test

41
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Generative vs. Discriminative eecs
eo0
Y o0
Classifiers .
e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)
e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal C X, D
e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)
e Discriminative classifiers:
. , C YD
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l X D

e Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2011
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Naive Bayes vs Logistic eecs
[ N
M [ X ]
Regression c
e Consider Y boolean, X continuous, X=<X' ... Xm>
e Number of parameters to estimate:
T, EXp{’Z,[i(XJ 7ﬂm)2 ~logo, ; —C]}
NB: p(ylx) = k'i o
DT exp{—zl[ﬁ(xj -t ) ~log o, —Cj}
LR: ) 1
HX)=—"+-
1+e%"
e Estimation method:
e NB parameter estimates are uncoupled
e LR parameter estimates are coupled
© Eric Xing @ CMU, 2006-2011 43
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Naive Bayes vs Logistic
: e
Regression :
e Asymptotic comparison (# training examples — infinity)
e when model assumptions correct
e NB, LR produce identical classifiers
e when model assumptions incorrect
e LRis less biased — does not assume conditional independence
e therefore expected to outperform NB
© Eric Xing @ CMU, 2006-2011 44
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Naive Bayes vs Logistic
Regression o

e Non-asymptotic analysis (see [Ng & Jordan, 2002] )

e convergence rate of parameter estimates — how many training
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

e NB converges more quickly to its (perhaps less helpful)
asymptotic estimates

© Eric Xing @ CMU, 2006-2011 45
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Rate of convergence: logistic i
[ X
- [ X J
regression o
e Let hy; ,, be logistic regression trained on n examples in m
dimensions. Then with high probability:
€(hpis.n) < €(hpisco) + O( = log E)
i T
e Implication: if we want €(hpis,m) < €(hpis,oc) + €0
for some small constant &, it suffices to pick order m
examples
- Convergences to its asymptotic classifier, in order m examples
e result follows from Vapnik’s structural risk bound, plus fact that the "VC
Dimension" of an m-dimensional linear separators is m
© Eric Xing @ CMU, 2006-2011 46

23



Rate of convergence: naive
Bayes parameters

e Letany ¢, 50, and any n >0 be fixed.
Assume that for some fixed p, > 0,
we have that py <p(y=T) <1-po

o Letn=0((1/e)log(m/s))

e Then with probability at least 1-6, after n examples:

[p(zily = b) — p(zily =b)| <

1. For discrete input, foralliand b

Py =0) —py="b)| < e

. ) |,l:'.-_.'_ |ly=b — Ju'i|jr;=h| <€ )
2. For continuous inputs, for alliand b

2
|Ur.|y b 1L|y:b| <€

© Eric Xing @ CMU, 2006-2011 47
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Some experiments from UCI data | 332:
[ X L1
[ XN
[ X J
sets o
e A imstman et il § - ]
- -
: W, ) ‘..\,
S LN b
B ey | LS
e s N s i ‘ o
N o) N
o Y K.\\:Q 1\ | \
4\ ! = S \t___“___ | \~
= — = e T
s [p— ——
L 1 — ——
o I\. i |
Ll s \ R ||
e i a8
T —
..... —— =
T e Sl — v
b b |
[ . | N
£ . T
Figure 1: Tesuls of 16 mwnmmu on datasets from the UCT Machine Learnin
n-;-:mm Ilwnn\ orrar Vi, m over 1000 mndar
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Summary

e Naive Bayes classifier

What's the assumption
Why we use it
How do we learn it

e Logistic regression

Functional form follows from Naive Bayes assumptions
For Gaussian Naive Bayes assuming variance
For discrete-valued Naive Bayes too

But training procedure picks parameters without the conditional independence
assumption

e Gradient ascent/descent

— General approach when closed-form solutions unavailable

e Generative vs. Discriminative classifiers

— Bias vs. variance tradeoff

© Eric Xing @ CMU, 2006-2011 49
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[ X X X
[ X L1
[ XN
. (X}
ppenaix o
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Subtleties of NB classifier 1 — selt
Violating the NB assumption o

|

e Often the X' are not really conditionally independent
e We use Naive Bayes in many cases anyway, and it often

works pretty well

e Often the right classification, even when not the right probability (see

[Domingos&Pazzani, 1996])
e But the resulting probabilities P(Y|X,,,) are biased toward 1 or 0 (why?)
© Eric Xing @ CMU, 2006-2011 51
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Subtleties of NB classifier 2 — sels
Insufficient training data '

e What if you never see a training instance where w'°0>0 when
Y=b?

e e.g., Y={SpamEmail or not}, w999 = {'pill’, ‘enhancement’, ‘Rolex’, ‘enlarge’ ... }
e P(enlargement>0|Y=T)=0

e Thus, no matter what the values wy,...,w,/’enlargement’ take:
e P(Y=T|w'w2,... enlargement, ..., wk) =0

e What now???

© Eric Xing @ CMU, 2006-2011 52
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Learning NB: parameter
estimation

e Maximum Likelihood Estimate (MLE):

choose 6 that maximizes probability of observed data 2

0 = arg max P(D|#)

e Maximum a Posteriori (MAP) estimate:

choose 6 that is most probable given prior probability and the data

0

arg max p(0|D)

P(D|0)p(0)
P(D)

= argmax
& a
e Bayesian estimate:

o = jﬁmmoma
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MAP for the parameters of NB

Discrete features:

e Maximum a Posteriori (MAP) estimate: (MAP’s):

5 . P(D|0)P(6)
0 = argm‘é}xW

e Given prior:
e Consider binary feature
e (dis a Bernoulli rate
Loy +ag) ot (1)t = 0 (1-0)"

PO ) = ) By )

e Let B,=Count(X=a) «- number of examples where X=a

.q.‘?-g-+ny\—l(1 o g).ip+np—l
B(Br + o, Br + arp)
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. . (XX}
Bayesian learning for NB secs
: o0
parameters — a.k.a. smoothing :
e Posterior distribution of @
Bemouli: gortor—1(1 — g)drtar-1 _ ,
° ernoulli: PO | D)= B T orBrton ~ Beta(By~+ayy, Br+oar)
[, ot
e Multinomial P(8| D)= B3, Jr“’;l“{__ﬁkJrGh_) ~ Dirichlet(B14ay,. .., Bg+ag)
e MAP estimate:
6 = arg max P(0|D) =
e Beta prior equivalent to extra thumbtack flips
e As N — oo, prior is “forgotten”
e But, for small sample size, prior is important!
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MAP for the parameters of NB :

e Dataset of N examples
e Let B;,,=Count(X'=a,Y=b) «+— number of examples where X;=a and Y=b
e Lety,=Count(Y=b)

e Prior
Q(XY) o« Multinomial(ey, .., ) or Multinomial(a/K)
Q(Y) o« Multinomial(z, ..., zy) or Multinomial(#M)

m “virtual” examples

e MAP estimate

T = argmax H P(Y = yp; mp ) P |T) =7
T .i.-

0ijr = arg t},‘m.xHP(X"' =2 |Y = yri 0iji) P(Oijic| dir) =7
ijk J.

e Now, even if you never observe a feature/class, posterior probability never zero
© Eric Xing @ CMU, 2006-2011 56

28



