Machine Learning

10-701/15-781, Fall 2011
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e Homework 1 out today! Save at least 10 hours for it.

e About project

e Midterm and final
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Generative vs. Discriminative sece
classifiers ot

e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)
\
e Generative:
e Modeling the joint distribution
of all data
of TN
e Discriminative: N\ I A
e Modeling only points .
at the boundary / AW x!
W <t 1h) \H\ \
. . [ X X J
Learnlng Generative and EE;:
Discriminative Classifiers oo

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!

e Estimate parameters @[X@e’directly from training data

e Use Bayes rule to calculate P(Y|X= x)
~—

e Discriminative classifiers (e.qg., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l
e Estimate parameters of P(Y|X) directly from training data
2
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Suppose you know the following | 3222
|
e Class-specific Dist.: P(X|Y) ' k
J & Uy |
R =) 4=
= P(Xi ) BaUes classifier:
o)) T _ PXY)PIY)
PY|X) = P(X)
o ey Pl Aok - FUERLELIRU-A)
=P, ﬂz 2 %m%)

e Class prior (i.e., "weight"): P(Y)

e This is a generative model of the data!
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HH
Optimal classification °e

e Theorem: Bayes classifier is optimal!

e Thatis

errorirue(RBayes)) < errorirue(h), Vh(x)

e How to learn a Bayes classifier?
e Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k

© Eric Xing @ CMU, 2006-2011 6




[ X X J
0000
[ X L
[
. . oo
Learning Bayes Classifier &
N . |
e Training data (discrete case): (=1l 0i
{1l ]
X Y X'
\ /TN Al ekl
" % W hn
| Sky Temp Humid Wind Water Forecst EnjoySpt | : { Q
Vktin Yoo | Sunny Warm Nor - Warm _Same Yes Uy X Y
Sunny Warm High Strong Warm Same Yes -
Rainy Cold High Strong Warm Change No T
Sunny Warm High Strong Cool Change Yes P(‘{)_; T"
Yaro) y3=(0l) - -~ - -~ L
e Learning = estimating P(X|Y), and P(Y) PB‘IY)"PNW)

G 62 50 P0G, Xamie >
e Classification = using Bayes rule to calculate P(Y | X,,,) %"
Al{yd{w, we nee| B Lean ZM“[ s
b K~/ Ty
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Parameter learning from iid data:
The Maximum Likelihood Est. -

e Goal: estimate distribution parameters 8 from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

D={x; ..., X}
e Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(9) = P(xl,x21-~-v Xy 0)
=P(X;0)P(X,;0),...,P(xy;6)
N
= Hn:l P(Xn ; 9)
3. pick the setting of parameters most likely to have generated the data we saw:

0" =arg max L(¢) =argmaxlogL(0)
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How hard is it to learn the optimal | $:2:
classifier? H
|
e How do we represent these? How many parameters?
. Pric;r, P(Y):Y‘ . W
uppose IS composed O clasges Sky  Temp Humid Wind Water Forecst EnjoySpt
v v % % %‘3 e Demil Sl .|“.1\|
) )= - Y i /A e 2 o
F[% ’y) EP(U"IW)\E 2[' -ﬁk ) = T" Tl’ka’m ‘I;i]i[illlll;' \EJ‘J:I“ High ."ilrnn Warm Change T\Z'I
: 'k;(' e Sunny Warm  High  Strong Cool Change  Yes
e Likelihood, P(X|Y): = Ti', e ys y .
Suppgse X is compos‘yd of n binary features, , e~ H ! 6(”)
Pobeel )= OS] < T - g S,
Wk @) T OO e
=T T yo‘, ._ij g[ A 01/
[ Jn, {'/
e Complex model — High variance with limited data!!! ’
AN W
Do %) Whin g & A D),
Yo Wil e o .(# eef.
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Gaussian Discriminative Analysis |
e learning f: X - Y, where
e Xis a vector of real-valued features, X,= < X.1,...X," >
e Y is an indicator vector
e What does that imply about the form of P(Y|X)?
e The joint probability of a datum and its label is:
PO, e =11 o) = POy =D x Bk, 1yE =1) W (HSy) g
_ 1 10y i\ 7 tlg 4
ﬂ-k (27[‘2‘)1/2 exp{ z(Xn /uk) 2 (Xn ﬂk)} O(Mj k

e Given a datum x,, we predict its label using the conditional probability of the label
given the datum:

1 - . .
I, Wexp{-%(xn - 1) (X, 'ﬂk)}

POy =11%,,4,7) = :
zﬂ-k' W“P{'%(Xn -14) 27X, _ﬁk')}
=
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Conditional Independence

e Xis conditionally independent of Y given Z, if the probability
distribution governing X is independent of the value of Y, given
the value of Z

Vi, 7, k)P(X =ilY =j,Z=k) = P(X =i|Z = k)

Which we often write

P(X|Y,2)=P(X|2)

e eg,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
e Equivalent to: Fﬂﬁw% mé‘
P(X,Y | 2) = P(X | Z)P(Y | Z)

© Eric Xing @ CMU, 2006-2011 11

The Naive Bayes assumption

e Naive Bayes assumption:

e Features are conditionally independent given class:

P(X1, X2|Y) = P(X1| X5, Y)P(X>]Y)
= P(X1|Y)P(XalY) — =>U0)
e More generally: (9/‘, Jﬂ qz/n_{)-

P(X1.X"Y) =T P(X"|Y)

2

g

- s
e How many parameters now? P => PN
e Suppose X is composed of m binary features @7 (/)‘(“/1\/3 I

X (x?o (xP OXx?

© Eric Xing @ CMU, 2006-2011 , 12




The Naive Bayes Classifier

e Given:
e Prior P(Y)
e m conditionally independent features X given the class Y
e For each X, we have likelihood P(X,|Y)

e Decision rule:

v'=hyp(x) = argmax P(y)P(z',....2™|y)

= argmax P(y) H P(z'y)

e If assumption holds, NB is optimal classifier!

© Eric Xing @ CMU, 2006-2011 13

The A Gaussian Discriminative
Naive Bayes Classifier -

e \When X is multivariate-Gaussian vector:

e The joint probability of a datum and it label is:

-t

P(Xy, Yo =11, Z) = Py =D x p(X, | Yy =1, 2. %)

1 . _ -
=7 WEXF’{‘%(M - i) E(x, 'Nk)}

e The naive Bayes simplification
(X, Yo =1l 4,0) = plys =Dx[ [ p(x3 lys =L pl,0) %
i
LY @ @ @
=mn]] ! exp]- 1 Xo~
‘ i mo—kj ‘ool
o More generally:  p(X,, Y, |7,7) = p(y, | 7)< [ [ p(x} | ,.7)

j=1

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density

© Eric Xing @ CMU, 2006-2011 14
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The predictive distribution E
I
e Understanding the predictive distribution
k _ -
p(y:=1|xn,ﬁ,2,ﬂ')= p(yn_l’XnJﬂ’Z’ﬁ): ﬂ-kN(Xnilluk’Ek) *
p(X, [ 4,%) Zkvﬂk'N(Xn’l M Zy)
e Under naive Bayes assumption:
7 exp{—zj[;[xf:;kjﬂkjj ~log o —C]}
pys =11%,, 2.3, 7) = ) ) -
(X -l ) i
zkr”k'EXP{—z,{z(Uk;) IOgUk‘ C}}
e Fortwo class (i.e., K=2), and when the two classes haves the same
variance, ** turns out to be a logistic function
p(yr11:1|Xn) = B " = !
1 1+—>J} L expl-3 ) 2 ) + 2 (T Tl log 22|
:1 e—GTx" . ’
* © Eric Xing @ CMU, 2006-2011 ﬁ &(Mié’«' ) 15
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The decision boundary °

e The predictive distribution

1 1

M _ = -0"x,
1+exp{—2€jxn’ —00} lre

j=1

p(ys =1Ix,) =

e The Bayes decision rule:

1
i POL=1D06) e
Py, =11x,)

e For multiple class (i.e., K>2), * correspond to a softmax functio

"9kT Xn

e

—_
Z e—Hj Xn

j
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p(ys =1x,)=




Summary:
The Naive Bayes Algorithm

e Train Naive Bayes (examples)
o for each* value/y‘/_\‘ oluss U“A
o estimate mg/= P(Y = yi)
o for each value x; of each attribute X;
e estimate 0;i0 = P(Xi = 25Y =)
013"\/:?1;\‘ 0
e Classify (X

new)

langy

Y™ — argmax P(Y = y) H P(X' = x|V = yp)
vk i '

new
Yt — arg max g H Oijk
i

© Eric Xing @ CMU, 2006-2011 17

Generative vs. Discriminative
Classifiers

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal C X, D

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers: TS
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! 0

e Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2011 18




Logistic regression (sigmoid
classifier)

e The condition distribution: a Bernoulli

Py %) = pu(x)” (1= (X))

where x is a logistic function

X = T
4(X) Lre 0

T
e We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y|x) is
an exponential family function, more specifically, a
generalized linear model (see future lectures ...)

© Eric Xing @ CMU, 2006-2011 19
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Training Logistic Regression: sece
MCLE o

e Estimate parameters 6=<6,, 6,, ... ,> to maximize the
conditional likelihood of training data

e Trainingdata D= {(z1,11).....,(zn.yn)}

A.'
e Data likelihood = [ [ P(x:, i 6)

i=1 N
e Data conditional likelihood = [ [ P(#:l¥:: 0)

i=1
6 = arg max In H P(y;|zi;0)
© Eric Xing @ CMU, 2006-2011 20
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Expressing Conditional Log 3
. - ::.
Likelihood o
|
1(0) = lnHP(ydmz—; 0) = Zln P(yi|z;;0)
i i
- . 1
e Recall the logistic function:  p = 1
and conditional likelihood: P(y|z) = u(x)¥(1 — p(x))'~¥
(&) = Z In P(y;|e;: 8) = Z yi lnu(x;) + (1 — yi) In(1 — p(ay))
= Zy; In | i(}:lf} +In(1 — p(x;))} ,l(_y’i
= Z yif Tz — 072 + In(1 + (.=_”T"")
= S (w-1)0Tz + (1 + c@-)
©J.Eric Xing @ CMU, 2006-2011 21
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Maximizing Conditional Log sels
Likelihood o
?
e The objective: Pl y )
o) = IDHP(!M-’Bi: 0)
= Z(U’ —1)0'z; + In(1 + c_ﬂT‘“") '
0‘4
e Good news: /() is concave function of 4
e Bad news: no closed-form solution to maximize /(6)
© Eric Xing @ CMU, 2006-2011 22
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Gradient Ascent //)\

|
10) = W] Plz::0) ( \

Z(y; — 18"z +In(1 + (E_GT"") = Z(yi —1)0Tz; — Inpu(87x;) )

e Property of sigmoid function:

1 dp

= — —_— = 1 —
It et at =M= H

[
e The gradient:

%%ZWW%~%%¢@WWUWA

The gradient ascent algorithm iterate until change < ¢

Foralli,  6; —0;+n) (v — P(y; = Olz;;0))x]
. —_—

repeat !

[ X X ]
[ X X X
s
The Newton’s method o
e Finding a zero of a function
9t+1 — gt _ f gf)
fr(6)
J

12



The Newton’s method (con’d)

e To maximize the conditional likelihood I(6):

10) = Z{’U: —1)0Tz; + In(1 + (F”T""*')

since | is convex, we need to find & where I’(¢%)=0 !

e So we can perform the following iteration:

I'(0")
l”(@t)

gt = 0" +

© Eric Xing @ CMU, 2006-2011 25

The Newton-Raphson method

e In LR the @is vector-valued, thus we need the following
generalization:

o+ = 0! + H™'V (0"

e Vs the gradient operator over the function

e H is known as the Hessian of the function

© Eric Xing @ CMU, 2006-2011 26
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The Newton-Raphson method '
I
e In LR the #is vector-valued, thus we need the following
generalization:
ot = 0t + H-'V el (6"
e V is the gradient operator over the function
Vol(0) = Z(?}f —u;)r; = X' (y —u)
e His known as the Hessian of the function
H=VyVol(0) = ui(l—u)wix] = X"RX
where ;R,-.:- = u; (1 — u;)
. . [ X X ]
lterative reweighed least squares | 3:2:
(IRLS) 2

e Recall in the least square est. in linear regression, we have:
h=(XTX)"'XTy

which can also derived from Newton-Raphson

e Now for logistic regression:
o'tt = 0"+ H 'V l(0Y)
o' — (XTRX)"'XT(u—-1y)
= (XTRX) YXTRX#' — XT(u-y)}
= (X'RX)"'X"Rz

© Eric Xing @ CMU, 2006-2011 28
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Convergence curves

[ X X J
0000
o000
a2
IRLS .
I
e Recall in the least square est. in linear regression, we have:
9= (XTX)"'XTy
which can also derived from Newton-Raphson
e Now for logistic regression:
gt (XTRX)"'XTRz
where z=X#"-R '(u-y)
and R = u; (1 — ;)
[ X X ]
[ X X X
[ X L1
[ XN
[ X J
[ ]

a2 —

amz

oot

0008

0o

0004

ooz

amz

1
am} |

|
0008 '|I
fillis =3
oot |4

ooz

alt.atheism
VS.
comp.graphics

VS.

Legend: - X-axis: Iteration #; Y-axis: error
- In each figure, red for IRLS and blue for gradient descent

S Erie Xing @ M, 200-20b8

comp.windows.x
VS.
rec.motorcycles

30
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Logistic regression: practical
Issues

I
¢ NR (IRLS) takes O(N-@?) per iteration, where N= number of
training cases and o= dimension of input x, but converge in
fewer iterations

e Quasi-Newton methods, that approximate the Hessian, work
faster.

e Conjugate gradient takes O(Nd) per iteration, and usually
works best in practice.

e Stochastic gradient descent can also be used if Nis large c.f.
perceptron rule:

© Eric Xing @ CMU, 2006-2011 31

Case Study: Text classification

e Classify e-mails
e Y ={Spam,NotSpam}
e Classify news articles

e Y ={what is the topic of the article?}

e Classify webpages

e Y = {Student, professor, project, ...}

= I
e What about the features X? gé/%l A
e The text!

© Eric Xing @ CMU, 2006-2011 32
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- H 0000
Features X are entire document — X! e
- - - . .
for it word in article °
|
e s aardvark 0
Corporate Structure
TOTAL'S Staay about 2
Upatigam 5irategy
S L e al 2
s o |— | Africa 1
-
o
fa all about the apple 0
compan .
pany anxious 0
i3
At TOTAL, we draw our greatest strength from our gaS 1
fast grovang oil ancd gas seserees Our stralegic erphasis
on natural gag provides a strong posiion in a rapedhy
spunding merkst
i oil 1
Cr expandmg refnng and marketng operatons m Ana
and the Mediterranean i complement already solid
positons m Eurepe, Afnea, and the 15,
Cr growing specialty chemicals sector adds balance and Zaire 0
profil Lo the core cuergy busmiess
© Eric Xing @ CMU, 2006-2011 33
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Bag of words model :

e Typical additional assumption — Position in document
doesn’t matter: P(X'=x/|Y=y) = P(Xk=x|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!

LengthDoc _ LengthV ol
P) I PG o P J[ Py
i=1 k=1

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.

© Eric Xing @ CMU, 2006-2011 34
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Bag of words model s
I
e Typical additional assumption — Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!
LengthDoc _ LengthV ol
P(y) I PGy o Py [[ Pk
=1 k=1
in is lecture lecture next over person remember room
sitting the the the to to up wake when you
© Eric Xing @ CMU, 2006-2011 35
esss
NB with Bag of Words for text sese
classification o

e Learning phase:
e Prior P(Y)
Count how many documents you have from each topic (+ prior)
e P(XY)

For each topic, count how many times you saw word in documents of this
topic (+ prior)

e Test phase:

e For each document X,

Use naive Bayes decision rule

LengthDoc

hyp(xnew) = argmaxP(y) J[  P(ehewlv)
i=1

© Eric Xing @ CMU, 2006-2011 36
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0000

[

[ X J
Back to our 20 NG Case study s

[ ] Dataset CUmp.gIE.lp;uCE- . rec.autos sci.crvpt
comp.Ds-.rrllbs—\\m ;“;.ﬂ-nsc rec motorcycles sci electronics

e 20 News GrOUpS (20 ClasseS) ccmp.5§s:1 m.pt}:{ ﬁ; T\are rec_sport baseball scimed

Comp.$YS mac hardware rec sport hockey sci.space

e 61,118 words, 18,774 documents comp.windows x
talk politics.misc | talk religion misc
misc forsale talk politics guns alt atheism
talke politics mideast soc religion christian

e Experiment:
e Solve only a two-class subset: 1 vs 2.
e 1768 instances, 61188 features.
e Use dimensionality reduction on the data (SVD).
e Use 90% as training set, 10% as test set.
e Test prediction error used as accuracy measure.

2: I{ predict, — true label )

iclest set

Accwracy =
< # of test samples

© Eric Xing @ CMU, 2006-2011 37

(XY}
o000
000
- 1)
Results: Binary Classes :
Vs.
A ;. altatheism
ccuracy vs. B I E—
osk comp.graphics T R
I _2hal
nglk T P |
07t _
06} _
05l \ comp.windows.x |
Vs.

04r rec.motorcycles R
03t .
02t .
01k .

b .. . . . . . ITraining Ratio
0 01 02 03 04 05 06 0F 08 08 1
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Results: Multiple Classes

1
AccuracyDg

ool 5-out-0f-20 classes ]

o7t \ .
D'B_ T
RS 2

.2

-

0ar

04F

oaf All 20 classes

0zr

01y

ol 1TrainingRatio

© Erie Xing @ MU, 2606-2008 39

NB vs. LR

e Versus training size ﬂ 7
0.07 T T 7 T T T -
| ==-Training NB
0.06 | -¢-Training Log Reg

—+ Test NB + 30 features.
0.05 | —+—Test Log Reg * Afixed test set

8
- + Training set varied
e O from 10% to 100%
B g.03 of the training set
o
2
o

0.02f

0.01

pb 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6
Fraction of train set used for training

© Eric Xing @ CMU, 2006-2011 40




NB vs. LR

e Versus model size

0.07 T T T T T T T T
-=-Training NB
-¢-Training Log Reg
0.0
& —+—Test NB
——Test Log Reg
0.05
8
© 0.04
c
ed
k4
3 0.03
P
o
0.02
P,
0.01

5 10 15 20 25 30 35 40 45 50
Number of features used

© Eric Xing @ CMU, 2006-2011

Number of

dimensions of the
data varied from 5
to 50 in steps of 5

The features were
chosen in
decreasing order
of their singular
values

90% versus 10%
split on training
and test

41
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Generative vs. Discriminative eecs
eo0
Y o0
Classifiers .
e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)
e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal C X, D
e Estimate parameters o@-(/XjY)CBP() directly from training data
e Use Bayes rule to caIcuIate@
e Discriminative classifiers:
. , C YD
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l X D

e Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2011
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Naive Bayes vs Logistic eecs
[ N
M [ X ]
Regression c
e Consider Y boolean, X continuous, X=<X' ... Xm>
e Number of parameters to estimate:
T, EXp{’Z,[i(XJ 7ﬂm)2 ~logo, ; —C]}
NB: p(ylx) = k'i o
DT exp{—zl[ﬁ(xj -t ) ~log o, —Cj}
LR: ) 1
HX)=—"+-
1+e%"
e Estimation method:
e NB parameter estimates are uncoupled
e LR parameter estimates are coupled
© Eric Xing @ CMU, 2006-2011 43
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{ ]
Naive Bayes vs Logistic
: e
Regression :
e Asymptotic comparison (# training examples — infinity)
e when model assumptions correct
e NB, LR produce identical classifiers
e when model assumptions incorrect
e LRis less biased — does not assume conditional independence
e therefore expected to outperform NB
© Eric Xing @ CMU, 2006-2011 44

22



Naive Bayes vs Logistic
Regression o

e Non-asymptotic analysis (see [Ng & Jordan, 2002] )

e convergence rate of parameter estimates — how many training
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

e NB converges more quickly to its (perhaps less helpful)
asymptotic estimates

© Eric Xing @ CMU, 2006-2011 45
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Rate of convergence: logistic i
[ X
- [ X J
regression o
e Let hy; ,, be logistic regression trained on n examples in m
dimensions. Then with high probability:
€(hpis.n) < €(hpisco) + O( = log E)
i T
e Implication: if we want €(hpis,m) < €(hpis,oc) + €0
for some small constant &, it suffices to pick order m
examples
- Convergences to its asymptotic classifier, in order m examples
e result follows from Vapnik’s structural risk bound, plus fact that the "VC
Dimension" of an m-dimensional linear separators is m
© Eric Xing @ CMU, 2006-2011 46
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Rate of convergence: naive
Bayes parameters

e Letany ¢, 50, and any n >0 be fixed.
Assume that for some fixed p, > 0,
we have that py <p(y=T) <1-po

o Letn=0((1/e)log(m/s))

e Then with probability at least 1-6, after n examples:

[p(zily = b) — p(zily =b)| <

1. For discrete input, foralliand b

Py =0) —py="b)| < e

. ) |,l:'.-_.'_ |ly=b — Ju'i|jr;=h| <€ )
2. For continuous inputs, for alliand b

2
|Ur.|y b 1L|y:b| <€

© Eric Xing @ CMU, 2006-2011 47
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Some experiments from UCI data | 332:
[ X L1
[ XN
[ X J
sets o
e A imstman et il § - ]
- -
: W, ) ‘..\,
S LN b
B ey | LS
e s N s i ‘ o
N o) N
o Y K.\\:Q 1\ | \
4\ ! = S \t___“___ | \~
= — = e T
s [p— ——
L 1 — ——
o I\. i |
Ll s \ R ||
e i a8
T —
..... —— =
T e Sl — v
b b |
[ . | N
£ . T
Figure 1: Tesuls of 16 mwnmmu on datasets from the UCT Machine Learnin
n-;-:mm Ilwnn\ orrar Vi, m over 1000 mndar
© Enc Xlng @ CMU 2006 2011 - S BTG O AR 48
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Summary

e Naive Bayes classifier

What's the assumption
Why we use it
How do we learn it

e Logistic regression

Functional form follows from Naive Bayes assumptions
For Gaussian Naive Bayes assuming variance
For discrete-valued Naive Bayes too

But training procedure picks parameters without the conditional independence
assumption

e Gradient ascent/descent

— General approach when closed-form solutions unavailable

e Generative vs. Discriminative classifiers

— Bias vs. variance tradeoff

© Eric Xing @ CMU, 2006-2011 49
[ X X ]
[ X X X
[ X L1
[ XN
. (X}
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Subtleties of NB classifier 1 — selt
Violating the NB assumption o

|

e Often the X' are not really conditionally independent
e We use Naive Bayes in many cases anyway, and it often

works pretty well

e Often the right classification, even when not the right probability (see

[Domingos&Pazzani, 1996])
e But the resulting probabilities P(Y|X,,,) are biased toward 1 or 0 (why?)
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Subtleties of NB classifier 2 — sels
Insufficient training data '

e What if you never see a training instance where w'°0>0 when
Y=b?

e e.g., Y={SpamEmail or not}, w999 = {'pill’, ‘enhancement’, ‘Rolex’, ‘enlarge’ ... }
e P(enlargement>0|Y=T)=0

e Thus, no matter what the values wy,...,w,/’enlargement’ take:
e P(Y=T|w'w2,... enlargement, ..., wk) =0

e What now???
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Learning NB: parameter
estimation

e Maximum Likelihood Estimate (MLE):

choose 6 that maximizes probability of observed data 2

0 = arg max P(D|#)

e Maximum a Posteriori (MAP) estimate:

choose 6 that is most probable given prior probability and the data

0

arg max p(0|D)

P(D|0)p(0)
P(D)

= argmax
& a
e Bayesian estimate:

o = jﬁmmoma
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MAP for the parameters of NB

Discrete features:

e Maximum a Posteriori (MAP) estimate: (MAP’s):

5 . P(D|0)P(6)
0 = argm‘é}xW

e Given prior:
e Consider binary feature
e (dis a Bernoulli rate
Loy +ag) ot (1)t = 0 (1-0)"

PO ) = ) By )

e Let B,=Count(X=a) «- number of examples where X=a

.q.‘?-g-+ny\—l(1 o g).ip+np—l
B(Br + o, Br + arp)
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Bayesian learning for NB secs
: o0
parameters — a.k.a. smoothing :
e Posterior distribution of @
Bemouli: gortor—1(1 — g)drtar-1 _ ,
° ernoulli: PO | D)= B T orBrton ~ Beta(By~+ayy, Br+oar)
[, ot
e Multinomial P(8| D)= B3, Jr“’;l“{__ﬁkJrGh_) ~ Dirichlet(B14ay,. .., Bg+ag)
e MAP estimate:
6 = arg max P(0|D) =
e Beta prior equivalent to extra thumbtack flips
e As N — oo, prior is “forgotten”
e But, for small sample size, prior is important!
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3
MAP for the parameters of NB :

e Dataset of N examples
e Let B;,,=Count(X'=a,Y=b) «+— number of examples where X;=a and Y=b
e Lety,=Count(Y=b)

e Prior
Q(XY) o« Multinomial(ey, .., ) or Multinomial(a/K)
Q(Y) o« Multinomial(z, ..., zy) or Multinomial(#M)

m “virtual” examples

e MAP estimate

T = argmax H P(Y = yp; mp ) P |T) =7
T .i.-

0ijr = arg t},‘m.xHP(X"' =2 |Y = yri 0iji) P(Oijic| dir) =7
ijk J.

e Now, even if you never observe a feature/class, posterior probability never zero
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