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z Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic 
regression, decision stumps (or shallow decision trees)

Weak Learners:Weak Learners:
Fighting Fighting the biasthe bias--variance tradeoffvariance tradeoff

Are good ☺ - Low variance, don’t usually overfit
Are bad / - High bias, can’t solve hard learning problems

z Can we make weak learners always good???
z No!!! But often yes…
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Why boost weak learners?
Goal: Automatically categorize type of call requested 

(Collect, Calling card, Person-to-person, etc.)

z Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

z Hard to find single highly accurate prediction rule.
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Voting  (Ensemble Methods)
z Instead of learning a single (weak) classifier, learn many weak 

classifiers that are good at different parts of the input space

z Output class: (Weighted) vote of each classifier
z Classifiers that are most “sure” will vote with more conviction
z Classifiers will be most “sure” about a particular part of the space
z On average, do better than single classifier!

H: X → Y (-1,1)
h1(X) h2(X)

1 -1

? ?

? ?

1 -1

h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)
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Voting  (Ensemble Methods)
z Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the g p
input space

z Output class: (Weighted) vote of each classifier
z Classifiers that are most “sure” will vote with more conviction
z Classifiers will be most “sure” about a particular part of the space
z On average, do better than single classifier!

z But how do you ??? 
z force classifiers ht to learn about different parts of the input space?
z weigh the votes of different classifiers? αt
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Rationale: Combination of 
methods
z There is no algorithm that is always the most accurate

z We can select simple “weak” classification or regression 
methods and combine them into a single “strong” method

z Different learners use different

z Algorithms
z Parameters
z Representations (Modalities)
z Training sets
z Subproblems

z The problem: how to combine them
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Boosting [Schapire’89]
z Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote

z On each iteration t: 
z weight each training example by how incorrectly it was classified 
z Learn a weak hypothesis – ht

z A strength for this hypothesis – αt

z Final classifier: H(X) = sign(∑αt ht(X))

z Practically useful, and theoretically interesting
z Important issues:

z what is the criterion that we are optimizing? (measure of loss)
z we would like to estimate each new component classifier in the same manner 

(modularity)
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Combination of classifiers
z Suppose we have a family of component classifiers 

(generating ±1 labels) such as decision stumps:(g g ) p

where θ = {k,w,b}

z Each decision stump pays 

( )bwxxh k += sign);( θ

attention to only a single 
component of the 
input vector
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Combination of classifiers con’d
z We’d like to combine the simple classifiers additively so that 

the final classifier is the sign ofg

where the “votes” {αi} emphasize component classifiers that 
make more reliable predictions than others

I t t i

);();()(ˆ mmhhh θαθα xxx ++= K11

z Important issues:
z what is the criterion that we are optimizing? (measure of loss)
z we would like to estimate each new component classifier in the same manner 

(modularity)
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AdaBoost
z Input:

z N examples SN = {(x1,y1),…, (xN,yN)}p N {( 1 y1) ( N yN)}
z a weak base learner h = h(x,θ)

z Initialize: equal example weights wi = 1/N for all i = 1..N
z Iterate for t = 1…T:

1. train base learner according to weighted example set (wt ,x) and obtain hypothesis 
ht = h(x,θt)

2. compute hypothesis error εt

3 compute hypothesis weight α3. compute hypothesis weight αt

4. update example weights for next iteration wt+1

z Output: final hypothesis as a linear combination of ht
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AdaBoost
z At the kth iteration we find (any) classifier h(x; θk*) for which 

the weighted classification error:g

is better than change.
z This is meant to be "easy" --- weak classifier

z Determine how many “votes” to assign to the new component 
classifier:
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classifier:

z stronger classifier gets more votes

z Update the weights on the training examples:

( )kkk εε /)(log. −= 150α
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Boosting Example (Decision 
Stumps)
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Boosting Example (Decision 
Stumps)
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z What is the criterion that we are optimizing? 
(measure of loss)(measure of loss)

14© Eric Xing @ CMU, 2006-2011



8

Measurement of error
z Loss function:

( )))(())(( hIhλ

z Generalization error:

z Objective: find h with minimum generalization error

( )))((e.g.                      ))(,( xx hyIhy ≠λ
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z Main boosting idea: minimize the empirical error:
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Exponential Loss
z Empirical loss:

N
ˆ1ˆ

z Another possible measure of empirical loss is
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Exponential Loss
z One possible measure of empirical loss is
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Recall that:
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z The combined classifier based on m − 1 iterations defines a weighted loss 
criterion for the next simple classifier to add

z each training sample is weighted by its "classifiability" (or difficulty) seen by the 
classifier we have built so far 
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Linearization of loss function
z We can simplify a bit the estimation criterion for the new 

component classifiers (assuming α is small)p ( g )

z Now our empirical loss criterion reduces to
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z We could choose a new component classifier to optimize this 
weighted agreement

∑∑

∑

=

−

=

−

=

−=

≈

n

i
mii

m
im

n

i

m
i

mimi
i

i

hyWaW

hayW

1

1

1

1

1
1

);(

));((

θ

θ

x

x
{ })(ˆexp imi

m
i hyW x1

1
−

− −=

18© Eric Xing @ CMU, 2006-2011



10

A possible algorithm
z At stage m we find θ* that maximize (or at least give a 

sufficiently high) weighted agreement:y g ) g g

z each sample is weighted by its "difficulty" under the previously combined m − 1 
classifiers,

z more "difficult" samples received heavier attention as they dominates the total 
loss

z Then we go back and find the “votes” α * associated with the
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z Then we go back and find the votes  αm* associated with the 
new classifier by minimizing the original weighted 
(exponential) loss { });(exp)(ˆ
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The AdaBoost algorithm
z At the kth iteration we find (any) classifier h(x; θk*) for which 

the weighted classification error:

{ })(ˆexp imi
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i hyW x1
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is better than change.
z This is meant to be "easy" --- weak classifier

z Determine how many “votes” to assign to the new component 
classifier:
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classifier:

z stronger classifier gets more votes

z Update the weights on the training examples:
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The AdaBoost algorithm cont’d
z The final classifier after m boosting iterations is given by the 

sign ofg

z the votes here are normalized for convenience

m
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Boosting
z We have basically derived a Boosting algorithm that 

sequentially adds new component classifiers, each trained on q y p ,
reweighted training examples
z each component classifier is presented with a slightly different problem

z AdaBoost preliminaries:
z we work with normalized weights Wi on the training examples, initially 

uniform ( Wi = 1/n)
z the weight reflect the "degree of difficulty" of each datum on the latest 

classifier 
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AdaBoost: summary
z Input:

z N examples SN = {(x1,y1),…, (xN,yN)}p N {( 1 y1) ( N yN)}
z a weak base learner h = h(x,θ)

z Initialize: equal example weights wi = 1/N for all i = 1..N
z Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis 
ht = h(x,θt)

2. compute hypothesis error εt

3 compute hypothesis weight α3. compute hypothesis weight αt

4. update example weights for next iteration wt+1

z Output: final hypothesis as a linear combination of ht
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Base Learners
z Weak learners used in practice:

z Decision stumps (axis parallel splits)ec s o stu ps (a s pa a e sp ts)
z Decision trees (e.g. C4.5 by Quinlan 1996)
z Multi-layer neural networks
z Radial basis function networks

z Can base learners operate on weighted examples?
z In many cases they can be modified to accept weights along with thez In many cases they can be modified to accept weights along with the 

examples
z In general, we can sample the examples (with replacement) according to 

the distribution defined by the weights
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[Schapire, 1989]

Boosting results – Digit 
recognition

Test Error

Training Error

z Boosting often, 
z Robust to overfitting
z Test set error decreases even after training error is zero

but not always
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Generalization Error Bounds
[Freund & Schapire’95]

T smalllarge small

T largesmall large
tradeoff

bias variance

z T – number of boosting rounds
z d – VC dimension of weak learner, measures complexity of 

classifier 
z m – number of training examples
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Generalization Error Bounds
[Freund & Schapire’95]

With high
probabilit

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
z Robust to overfitting
z Test set error decreases even after training error is zero

probability

z Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds
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Why it is working?
z You will need some learning theory (to be covered in the next 

two lectures) to understand this fully, but for now let's just go ) y, j g
over some high level ideas

z Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,  
Boosting should overfit!

28© Eric Xing @ CMU, 2006-2011



15

Test

Experiments

error

Training
error

The Boosting Approach to Machine Learning, by Robert E. Schapire
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Training Margins
z When a vote is taken, the more predictors agreeing, the more 

confident you are in your prediction.y y p

z Margin for example:
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The margin lies in [−1, 1] and is negative for all misclassified examples.

z Successive boosting iterations improve the majority vote or 
margin for the training examples
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A Margin Bound
z For any γ, the generalization error is less than:

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. 
Boosting the margin: A new explanation for the effectiveness of voting 

methods.  The Annals of Statistics, 26(5):1651-1686, 1998. 
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z It does not depend on T!!!
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Logistic regression assumes:

Boosting and Logistic 
Regression

And tries to maximize data likelihood:
iid

Equivalent to minimizing log loss
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Logistic regression equivalent to minimizing log loss

Boosting and Logistic 
Regression

Boosting minimizes similar loss function!!

Weighted average of weak learners
log loss

Both smooth approximations 
of 0/1 loss!

1

0

0/1 loss

exp loss
log loss

33© Eric Xing @ CMU, 2006-2011

Logistic regression:
z Minimize log loss

Boosting:
z Minimize exp loss

Boosting and Logistic 
Regression

z Minimize log loss

z Define 

z Minimize exp loss

z Define 

where xj predefined 
features
(linear classifier)

z Jointly optimize over all 
weights w0, w1, w2…

where ht(x) defined dynamically 
to fit data
(not a linear classifier)

z Weights αt learned per 
iteration t incrementally 34© Eric Xing @ CMU, 2006-2011
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Weighted average of weak 

Hard & Soft Decision

learners

Hard Decision/Predicted label:

Soft Decision:
(based on analogy with
logistic regression)
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Good ☺ : Can identify outliers since focuses on examples that are 
hard to categorize

Effect of Outliers

Bad / : Too many outliers can degrade classification performance
dramatically increase time to convergence
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Summary
z Boosting takes a weak learner and converts it to a strong
z onez one

z Works by asymptotically minimizing the empirical error

z Effectively maximizes the margin of the combined hypothesis
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Learning from weighted data
z Consider a weighted dataset

z D(i) – weight of i th training example (xi,yi)
z Interpretations:

z i th training example counts as D(i) examples
z If I were to “resample” data, I would get more samples of “heavier” data 

points

z Now, in all calculations, whenever used, i th training 
example counts as D(i) “examples”example counts as D(i) examples
z e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = ∑ 1(Y i=y) Count(Y=y) = ∑ D(i)1(Y i=y)

i =1

m

i =1

m

38© Eric Xing @ CMU, 2006-2011


