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Weak Learners:
Fighting the bias-variance tradeoff

e Simple (a. eak) learners e.g., naive Bayes, logistic
regression, decision stumps Yor shallow decision trees)

Are good © - Low variance, don’t usually overfit

Are bad ® - High bias, can’t solve hard learning problems

e Can we make weak learners always good???
e Nolll But often yes...
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Why boost weak learners? s
Goal: Automatically categorize type of call requested
(Collect, Calling card, Person-to-person, etc.)
yes I'd like to place a collect call long
distance please (Collect)
operator I need to make a call but I need to
bill it to my office (ThirdNumber)
yes I'd like to place a call on my master card
please (CallingCard)
o Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’
e Hard to find single highly accurate prediction rule.
© Eric Xing @ CMU, 2006-2011 3
[ X X ]
[ X X X
[ X L1
: T
Voting (Ensemble Methods) :

e Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

e Output class: (Weighted) vote of each classifier
e Classifiers that are most “sure” will vote with more conviction
e Classifiers will be most “sure” about a particular part of the space
e On average, do better than single classifier!
mx) hax) /o X =Y
VAl /5T HX) = hi(X)+h2(X)

H(X) = sign(Yat ht(X))
t
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Voting (Ensemble Methods)

e Instead of learning a single (weak) classifier, learn malny
weak classifiers that are good at different parts of the
input space

e Output class: (Weighted) vote of each classifier
e Classifiers that are most “sure” will vote with more weights
e Classifiers will be most “sure” about a particular part of the space
e On average, do better than single classifier!

e But how do you ???
e force classifiers h, to learn about different parts of the input space?
e weigh the votes of different classifiers? o,
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Rationale: Combination of §§:
methods oo

e There is no algorithm that is always the most accurate

e We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

e Different learners use different

e Algorithms

e Parameters

e Representations (Modalities)
e Training sets

e Subproblems

e The problem: how to combine them
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Boosting [Schapire’89] W |
e lIdea: given a weak learner, run_it multiple times on (reweighted)
training data, then let learned classifiers vote
e On each iteration 1:
° Wach training example by how incorrectly it was classified Wy
e Learn a weak hypothesis ¢ H )
. : h = Zof otk
e A strength for this hypothess@{(@) T
e Final classifier: — .
|H(X) = sign(Tat he(X)) |
e Practically useful, and theoretically interesting
e Important issues:
e what is the criterion that we are optimizing? (measure of loss)
e we would like to estimate each new component classifier in the same manner
(modularity)
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Combination of classifiers :

e Suppose we have a family of component classifiers
(generating +1 labels) such as decision stumps:

h(x;6) = sign(wx, +b)

where 6= {k,w,b}

e Each decision stump pays
attention to only a single

component of the
input vector

¢ TR VRET ] [] 83 &4 o8 o8 [ () 14

© Eric Xing @ CMU, 2006-2011 8




[ X X J
0000
[ X L
- - - - , ::.
Combination of classifiers con’d |:
I
e We'd like to combine the simple classifiers additively so that
the final classifier is the sign of
h(X) = cyh(X.60,) +...+a, h(X;0,)
where the “votes” {¢;} emphasize component classifiers that
make more reliable predictions than others
e Important issues:
e what is the criterion that we are optimizing? (measure of loss)
e we would like to estimate each new component classifier in the same manner
(modularity)
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AdaBoost :

e Input:
o Nexamples Sy ={(Xy,y1),---, (XnsYn)}
e aweak base learner h = h(x,6)

e Initialize: equal example weights w; = 1/N for all i = 1..N
o |terate fort=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,=h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight ¢
4. update example weights for next iteration w,,,

e Output: final hypothesis as a linear combination of h,
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e At the kth iteration we find (any) classifier /(x; 6,*) for which
the weighted classification error:
& =2 Wy, #h(x;6) | Y W
i=1 i=1
is better than change.
e This is meant to be "easy" --- weak classifier
e Determine how many “votes” to assign to the new component
classifier:
a, =0.5log((1-¢,)/¢,)
e stronger classifier gets more votes
e Update the weights on the training examples:
W) =w!"exp{-|y.afn(x;6,
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Boosting Example (Decision sece
Stumps) oo
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Boosting Example (Decision
Stumps)
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e What is the criterion that we are optimizing?
(measure of loss)
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Measurement of error o2
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e Loss function:
A, () (€91 H(x)
e Generalization error:
L(h) = E[A(y, h(x))]
e Objective: find h with minimum generalization error
e Main boosting idea: minimize the empirical error:
Aain boosti ‘ o
L(h) = ﬁz;t(yi’h(xi))
i=1
[ X X ]
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Exponential Loss o
e Empirical loss: 1 )
A 1 & N
L(h) = ﬁzﬂ(y[,hm (x,))
i=1
~—— ——

e Another possible measure of empirical loss is

L(h) :\21 xp{— vih, (xi)}
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Exponential Loss

e One possible measure of empirical loss is

A~ n ~ Recall that:
L(h) = ;exp{— )J*M ] h ()= ah(0,) + ...t @, h(x;0,

D —

=S expl vy 1 (%) - v, h(x,:0,)]
i=1

- ieXp{_ ythAm71 (Xi)}eXp{— y,a,h(X;;6,)}

S expl- v h(x;0,)) P =X ()

i
i=1

e The combined classifier based on m — 1 iterations defines a weighted loss
criterion for the next simple classifier to add 1 A
e each training sample is weighted by its "classifiability" (or difJ‘W{f—?) %ﬁﬂdym(x%“)
classifier we have built so far . ~
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Linearization of loss function

e We can simplify a bit the estimation criterion for the new
component classifiers (assuming « is small)

e Now our empirical loss criterion reduces to v

X< -Y){ Wa-t, g
n N w .
Zexp{_yihm (Xi)} ‘ @/
i=1 \lm h( B') WM

~ z w1 y.a,h(X;;0,))
i1

n n VVim_l = eXp{— yi}’l\m—l (Xz)
=S a, Y h(x,:6,)

i=1 i=1
e We could choose a new component classifier to optimize this

weighted agreement
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A possible algorithm

|
e At stage m we fin@hat maximize (or at least give a
sufficiently high) weighted agreement:

> Wy h(x,;6))
i=1

e each sample is weighted by its "difficulty" under the previously combined m — 1

classifiers,
e more "difficult" samples received heavier attention as they domiates the total

loss hm = lrm—[‘F%“,ﬁk)

e Then we go back and find the “votes” «,, * associated with the
new classifier by minimizing th igi eighted
(exponential) loss  L(#)=> w" exp{- y,a,
1-— €t
= oy = %ln (
€t
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The AdaBoost algorithm [y —expl 3, ,(x)

I
e At the kth iteration we find (any) classifier 4(x; 6,*) for which
the weighted classification error:

£, = Zn:VVik_ll(yi #h(X,;0,) Z":Wik-l W{_ﬁlc P{anw

_ ) hle =L M (4, Bn)
is better than change. Glm\{w
e This is meant to be "easy" --- weak classifier p‘ C )
H 113 ” H M
e Determine how many “votes” to assign to the new component
classifier:

a, =0.5log((1-¢,)/¢,)
e stronger classifier gets more votes

e Update the weights on the training examples:
W= W;k4 exp{— yiah(x;; Hk)}
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The AdaBoost algorithm cont’d

|
e The final classifier after m boosting iterations is given by the

sign of

o h(X,6,)+...+a,h(x;0,)
a+..+a,

h(X) =

e the votes here are normalized for convenience
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Boosting

e We have basically derived a Boosting algorithm that
sequentially adds new component classifiers, each trained on
reweighted training examples

e each component classifier is presented with a slightly different problem

e AdaBoost preliminaries:

e we work with normalized weights 7, on the training examples, initially
uniform ( W, = 1/n)

e the weight reflect the "degree of difficulty" of each datum on the latest
classifier
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AdaBoost: summary

e Input:
e Nexamples Sy = {(X1,Y1),---, XY}
e aweak base learner h = h(x,6)

¢ Initialize: equal example weights w; = 1/N for all i = 1..N

e lteratefort=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,=h(x.)

2. compute hypothesis error &

3. compute hypothesis weight o;

4. update example weights for next iteration w,,,

e Output: final hypothesis as a linear combination of h,
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Base Learners

e Weak learners used in practice:
e Decision stumps (axis parallel splits)
e Decision trees (e.g. C4.5 by Quinlan 1996)
e Multi-layer neural networks
e Radial basis function networks

e Can base learners operate on weighted examples?

e In many cases they can be modified to accept weights along with the
examples

e In general, we can sample the examples (with replacement) according to
the distribution defined by the weights
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recognition [Schapire, 1989] | ©
I
20-
Test Error =
(
Training Error i
10 100 1000
# rounds
e Boosting often, but not always
e Robust to overfitting
e Test set error decreases even after training error is zero
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Generalization Error Bounds .
[Freund & Schapire’95]

erroryy(H) < erroryqan(H) + O

bias variance
large small T small
tradeoff
small large T large

e T — number of boosting rounds

e d - VC dimension of weak learner, measures complexity of
classifier

e m — number of training examples
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Generalization Error Bounds .

[Freund & Schapire’95]

|
error H : ‘ I 4/ T_d With high
?57"%6( ) é ETTOTtra@n(H) + O V

m probability

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
e Robust to overfitting
e Test set error decreases even after training error is zero

Need better analysis tools — margin based bounds

A\ - 2 op (ahu |

© Eric Xing @ CMU, 2006-2011 27

Why it is working?

e You will need some learning theory (to be covered in the next
two lectures) to understand this fully, but for now let's just go
over some high level ideas

e Generalization Error:

With high probability, Generalization error is less than:

Pr[H(z) # y]+ O (\/%)

As T goes up, our bound becomes worse,
Boosting should overfit!
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Experiments '
Test
error\

/

Training ' 10 100 1000
error # rounds

The Boosting Approach to Machine Learning, by Robert E. Schapire
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Training Margins -

e When a vote is taken, the more predictors agreeing, the more
confident you are in your prediction.

e Margin for example:

alh(x,.;é?l)+...+amh(xi;¢9m)}

marginh(xi’yi):yi|: vt 1o
1 o m

The margin lies in [-1, 1] and is negative for all misclassified examples.

e Successive boosting iterations improve the majority vote or
margin for the training examples
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A Margin Bound g
e For any y, the generalization error is less than:
Pr(margin, (xy) < 7 )+ O[ /WJ
v
Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of voting
methods. The Annals of Statistics, 26(5):1651-1686, 1998.
e |t does not depend on 71!
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Boosting and Logistic -
: a2
Regression :
Logistic regression assumes:
1
P(Y =1|X) = f@)=wo+ ) wjz,
) = e (@) j
And tries to maximize data likelihood:
iid m 1
pP(D|f)= ]I

= 1L+ exp(—y;f(x;))

Equivalent to minimiziagTog loss

—log P(D|f) = i In(1 + exp(—y;f(z;)))
=1
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Boosting and Logistic
Regression

Logistic regression equivalent to minimizing log loss

> In(1 + exp(—y; f (%)) flx) :(wo+Zw}wj
i=1 - N

Boosting minimizes similar loss function!!

1 m
— > exp(~yif(x:)) =[] % (@) =3 athy(z)
i—1 t t
‘ Weighted average of weak learners
log loss
y=1 exp loss Both smooth approximations
’ of 0/1 loss!
0/1 loss

\ ‘ «
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Boosting and Logistic -
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Regression :
Logistic regression: Boosting:
e Minimize log loss e Minimize exp loss
> In(1 +exp(—yif (1)) > exp(—yif ()
i=1 =1
e Define e Define
flx) =) wjz; f2) =) athy(x)
i 4
where x; predefined where /,(x) defined dynamically
features to fit data
(linear classifier) (not a linear classifier)
e Jointly optimize over all e Weights o, learned per

weights wo, w1, wa... . aigration tincrementally
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Hard & Soft Decision o
Weighted average of weak f(z) = Z ashe(2)
learners t
Hard Decision/Predicted label: H(z) = sign(f(z))
Soft Decision: 1
(based on analogy with PY=1X)=——""—""—
logistic regression) 1+ exp(f(x))
(X X}
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Effect of Outliers :

Good © : Can identify outliers since focuses on examples that are
hard to categorize

Bad ® : Too many outliers can degrade classification performance
dramatically increase time to convergence

Lt
+++
O 4 - @
+ o+ -
+ ___
- - @
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Summary :
|
e Boosting takes a weak learner and converts it to a strong
e Ohe
e Works by asymptotically minimizing the empirical error
e Effectively maximizes the margin of the combined hypothesis
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Learning from weighted data :

e Consider a weighted dataset
e D(i) — weight of i th training example (x/,y')
e Interpretations:
i th training example counts as D(i) examples

If | were to “resample” data, | would get more samples of “heavier” data
points

e Now, in all calculations, whenever used, i th training
example counts as D(i) “examples”

e e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = 3 1(Y '=y) Count(Y=y) = 3 D)(Y =y)
i=1 i=1
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