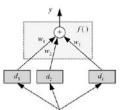


10-701/15-781, Fall 2011

Ensemble methods Boosting from Weak Learners



Eric Xing

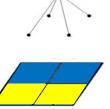
Lecture 22, November 30, 2011

Reading: Chap. 14.3 C.B book

© Eric Xing @ CMU, 2006-2011

Weak Learners: Fighting the bias-variance tradeoff

• Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)



Are good ☺ - Low variance, don't usually overfit

Are bad ☻ - High bias, can't solve hard learning problems

- Can we make weak learners always good???
 - No!!!

But often yes...

© Eric Xing @ CMU, 2006-2011

Why boost weak learners?

Goal: Automatically categorize type of call requested (Collect, Calling card, Person-to-person, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- Easy to find "rules of thumb" that are "often" correct.

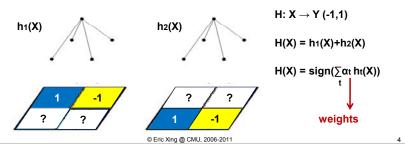
 E.g. If 'card' occurs in utterance, then predict 'calling card'
- Hard to find single highly accurate prediction rule.

© Eric Xing @ CMU, 2006-2011

2

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!



Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more weights
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!
- But how do you ???
 - force classifiers h, to learn about different parts of the input space?
 - weigh the votes of different classifiers? α_t

© Eric Xing @ CMU, 2006-2011

5

Rationale: Combination of methods

- There is no algorithm that is always the most accurate
- We can select simple "weak" classification or regression methods and combine them into a single "strong" method
- Different learners use different
 - Algorithms
 - Parameters
 - Representations (Modalities)
 - Training sets
 - Subproblems
- The problem: how to combine them

© Eric Xing @ CMU, 2006-2011

Boosting [Schapire'89]

- Idea: given a weak learner, run_it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t.
 - weight each training example by how incorrectly it was classified W.
 - Learn a weak hypothesis + h,
 - A strength for this hypothesis (α) (ε)
- $N_{t} = \sum_{t=1}^{t_{1}-1} x_{t} dt dt_{t}, N_{t_{1}}$

• Final classifier:

$$H(X) = sign(\sum \alpha_t h_t(X))$$

- Practically useful, and theoretically interesting
- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)

© Eric Xing @ CMU, 2006-2011

7

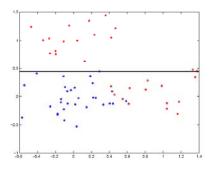
Combination of classifiers

• Suppose we have a family of component classifiers (generating ±1 labels) such as decision stumps:

$$h(x;\theta) = \operatorname{sign}(wx_k + b)$$

where $\theta = \{k, w, b\}$

 Each decision stump pays attention to only a single component of the input vector



© Eric Xing @ CMU, 2006-2011

Δ

Combination of classifiers con'd

• We'd like to combine the simple classifiers additively so that the final classifier is the sign of

$$\hat{h}(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

where the "votes" $\{\alpha_i\}$ emphasize component classifiers that make more reliable predictions than others

- · Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)

© Eric Xing @ CMU, 2006-2011

9

AdaBoost

- Input:
 - **N** examples $S_N = \{(x_1, y_1), ..., (x_N, y_N)\}$
 - a weak base learner $h = h(x, \theta)$
- Initialize: equal example weights $w_i = 1/N$ for all i = 1..N
- Iterate for t = 1...T:
 - 1. train base learner according to weighted example set (w_t, x) and obtain hypothesis $h_t = h(x, \theta_t)$
 - 2. compute hypothesis error ε_t
 - 3. compute hypothesis weight α_r
 - 4. update example weights for next iteration \mathbf{w}_{t+1}
- Output: final hypothesis as a linear combination of h,

© Eric Xing @ CMU, 2006-2011

AdaBoost



• At the *k*th iteration we find (any) classifier $h(\mathbf{x}; \theta_k^*)$ for which the weighted classification error:

$$\varepsilon_k = \sum_{i=1}^n W_i^{k-1} I(y_i \neq h(\mathbf{x}_i; \boldsymbol{\theta}_k^*) / \sum_{i=1}^n W_i^{k-1}$$

is better than change.

- This is meant to be "easy" --- weak classifier
- Determine how many "votes" to assign to the new component classifier:

$$\alpha_k = 0.5 \log((1 - \varepsilon_k) / \varepsilon_k)$$

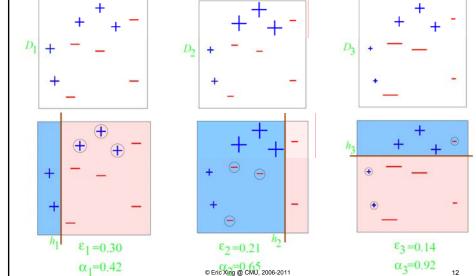
- stronger classifier gets more votes
- Update the weights on the training examples:

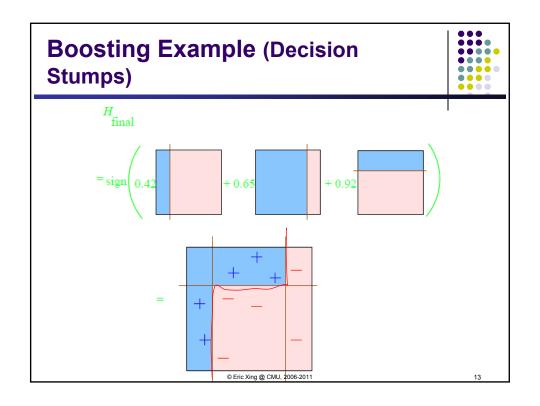
$$W_i^k = W_i^{k-1} \exp\{-\left[y_i a_k | h(\mathbf{x}_i; \theta_k)\right]\}$$

© Eric Xing @ CMU, 2006-2011

11

Boosting Example (Decision Stumps)





• What is the criterion that we are optimizing? (measure of loss)

Measurement of error

• Loss function:

(e.g.
$$I(y \neq h(\mathbf{x}))$$
)

• Generalization error:

$$L(h) = E[\lambda(y, h(\mathbf{x}))]$$

- Objective: find h with minimum generalization error
- Main boosting idea: minimize the empirical error:

$$\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(\mathbf{x}_i))$$

© Eric Xing @ CMU, 2006-2011

15

Exponential Loss

• Empirical loss:

$$\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, \hat{h}_m(\mathbf{x}_i))$$

• Another possible measure of empirical loss is

$$\hat{L}(h) = \sum_{i=1}^{n} \exp\left\{-y_i \hat{h}_m(\mathbf{x}_i)\right\}$$

© Eric Xing @ CMU, 2006-2011

Exponential Loss

One possible measure of empirical loss is

$$\hat{L}(h) = \sum_{i=1}^{n} \exp\left\{-y_{i}\hat{h}_{m}(\mathbf{x}_{i})\right\}$$

$$= \sum_{i=1}^{n} \exp\left\{-y_{i}\hat{h}_{m-1}(\mathbf{x}_{i}) - y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m})\right\}$$

$$= \sum_{i=1}^{n} \exp\left\{-y_{i}\hat{h}_{m-1}(\mathbf{x}_{i})\right\} \exp\left\{-y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m})\right\}$$

$$= \sum_{i=1}^{n} W_{i}^{m-1} \exp\left\{-y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m})\right\}$$

$$= \sum_{i=1}^{n} W_{i}^{m-1} \exp\left\{-y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m})\right\}$$

$$= \sum_{i=1}^{n} W_{i}^{m-1} \exp\left\{-y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m})\right\}$$

- The combined classifier based on m 1 iterations defines a weighted loss criterion for the next simple classifier to add
- each training sample is weighted by its "classifiability" (or difficulty) from by which (X. b) classifier we have built so far XX , Dx = agma (2) 17

© Eric Xing @ CMU, 2006-2011

Linearization of loss function

 We can simplify a bit the estimation criterion for the new component classifiers (assuming α is small)

$$\exp\{-y_i a_m h(\mathbf{x}_i; \theta_m)\} \approx 1 - y_i a_m h(\mathbf{x}_i; \theta_m) \quad \text{M-}$$

Now our empirical loss criterion reduces to

$$\sum_{i=1}^{n} \exp\left\{-y_{i}\hat{h}_{m}(\mathbf{x}_{i})\right\}$$

$$\approx \sum_{i=1}^{n} W_{i}^{m-1}(\mathbf{1} - y_{i}a_{m}h(\mathbf{x}_{i};\theta_{m}))$$

$$= \sum_{i=1}^{n} W_{i}^{m-1} - a_{m} \sum_{i=1}^{n} W_{i}^{m-1}y_{i}h(\mathbf{x}_{i};\theta_{m})$$

$$W_{i}^{m-1} = \exp\left\{-y_{i}\hat{h}_{m-1}(\mathbf{x}_{i})\right\}$$

• We could choose a new component classifier to optimize this weighted agreement

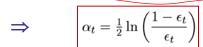
© Eric Xing @ CMU, 2006-2011

A possible algorithm

• At stage m we find θ^* that maximize (or at least give a sufficiently high) weighted agreement:

$$\sum_{i=1}^n W_i^{m-1} y_i h(\mathbf{x}_i; \boldsymbol{\theta}_m^*)$$

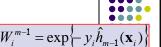
- each sample is weighted by its "difficulty" under the previously combined m 1
- more "difficult" samples received heavier attention as they dom/hates the total loss
- Then we go back and find the "votes" α_m * associated with the new classifier by minimizing the **original** weighted (exponential) loss $\hat{L}(h) = \sum_{i=1}^{n} W_i^{m-1} \exp\{-y_i a_m h(\mathbf{x}_i; \theta_m)\}$



© Eric Xing @ CMU, 2006-2011

19

The AdaBoost algorithm



• At the *k*th iteration we find (any) classifier $h(\mathbf{x}; \theta_k^*)$ for which the <u>weighted classification error</u>:

$$\varepsilon_k = \sum_{i=1}^n W_i^{k-1} I(y_i \neq h(\mathbf{x}_i; \boldsymbol{\theta}_k^*) / \sum_{i=1}^n W_i^{k-1} \qquad \text{Weal lange}$$

$$h_{\mathbf{m}}(\mathbf{x}, \mathbf{0}_{\mathbf{m}})$$

is better than change.

- This is meant to be "easy" --- weak classifier
- Determine how many "votes" to assign to the new component classifier:

$$\alpha_k = 0.5 \log ((1 - \varepsilon_k) / \varepsilon_k)$$

- stronger classifier gets more votes
- Update the weights on the training examples:

$$W_i^k = W_i^{k-1} \exp\{-y_i a_k h(\mathbf{x}_i; \theta_k)\}$$

© Eric Xing @ CMU, 2006-2011

The AdaBoost algorithm cont'd

 The final classifier after m boosting iterations is given by the sign of

$$\hat{h}(\mathbf{x}) = \frac{\alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)}{\alpha_1 + \ldots + \alpha_m}$$

• the votes here are normalized for convenience

© Eric Xing @ CMU, 2006-2011

21

Boosting

- We have basically derived a Boosting algorithm that sequentially adds new component classifiers, each trained on reweighted training examples
 - each component classifier is presented with a slightly different problem
- AdaBoost preliminaries:
 - we work with *normalized weights* W_i on the training examples, initially uniform (W_i = 1/n)
 - the weight reflect the "degree of difficulty" of each datum on the latest classifier

© Eric Xing @ CMU, 2006-2011

AdaBoost: summary

- Input:
 - **N** examples $S_N = \{(x_1, y_1), ..., (x_N, y_N)\}$
 - a weak base learner $h = h(x, \theta)$
- Initialize: equal example weights w_i = 1/N for all i = 1..N
- Iterate for t = 1...T:
 - 1. train base learner according to weighted example set $(w_p x)$ and obtain hypothesis $h_t = h(x, \theta)$
 - 2. compute hypothesis error ε_t
 - 3. compute hypothesis weight α_r
 - 4. update example weights for next iteration w_{t+1}
- Output: final hypothesis as a linear combination of h,

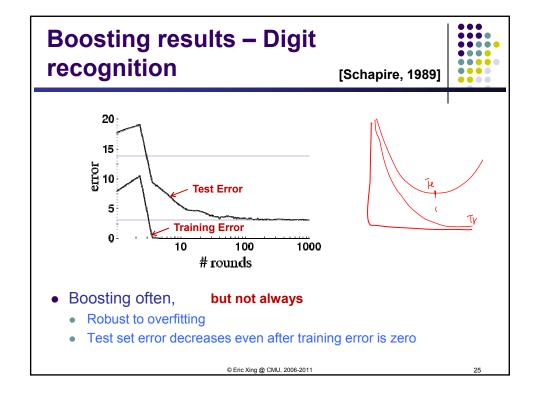
© Eric Xing @ CMU, 2006-2011

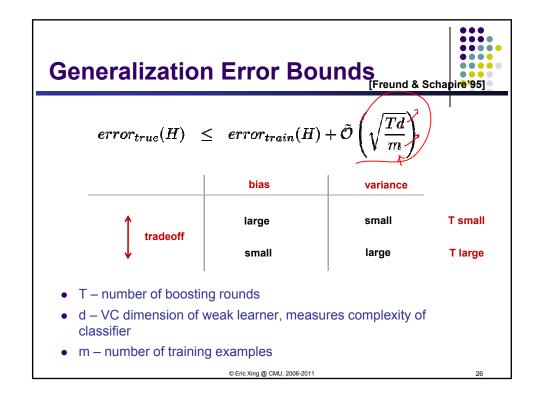
23

Base Learners

- Weak learners used in practice:
 - Decision stumps (axis parallel splits)
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - Radial basis function networks
- Can base learners operate on weighted examples?
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights

© Eric Xing @ CMU, 2006-2011





Generalization Error Bounds [Freund & Schapire '95]

$$error_{true}(H) \le error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

With high probability

Boosting can overfit if T is large

Boosting often,

Contradicts experimental results

- Robust to overfitting
- Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds

= 00 (-y: din h, (x))

© Eric Xing @ CMU, 2006-2011

27

Why it is working?

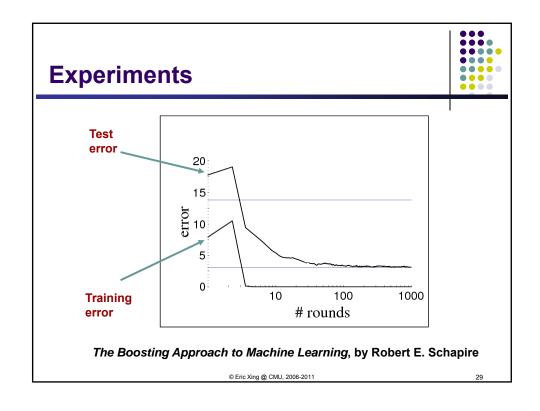
- You will need some learning theory (to be covered in the next two lectures) to understand this fully, but for now let's just go over some high level ideas
- Generalization Error:

With high probability, Generalization error is less than:

$$\hat{\Pr}\left[H(x) \neq y\right] + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$

As *T* goes up, our bound becomes worse, Boosting should overfit!

© Eric Xing @ CMU, 2006-2011



Training Margins

- When a vote is taken, the more predictors agreeing, the more confident you are in your prediction.
- Margin for example:

$$\operatorname{margin}_{h}(\mathbf{x}_{i}, y_{i}) = y_{i} \left[\frac{\alpha_{1}h(\mathbf{x}_{i}; \theta_{1}) + \ldots + \alpha_{m}h(\mathbf{x}_{i}; \theta_{m})}{\alpha_{1} + \ldots + \alpha_{m}} \right]$$

The margin lies in [-1, 1] and is negative for all misclassified examples.

 Successive boosting iterations improve the majority vote or margin for the training examples

© Eric Xing @ CMU, 2006-2011

A Margin Bound

For any γ , the generalization error is less than:

$$\Pr\left(\operatorname{margin}_{h}(\mathbf{x}, y) \leq \gamma\right) + O\left(\sqrt{\frac{\lambda}{m\gamma^{2}}}\right)$$

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.

• It does not depend on T!!!

© Eric Xing @ CMU, 2006-2011

Boosting and Logistic Regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$
 $f(x) = w_0 + \sum_j w_j x_j$

$$f(x) = w_0 + \sum_{j} w_j x_j$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|f) \stackrel{\text{iid}}{=} \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$-\log P(\mathcal{D}|f) = \sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

© Eric Xing @ CMU, 2006-2011

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

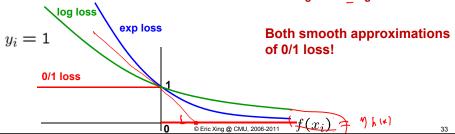
$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

$$f(x) = (w_0 + \sum_j w_j x_j)$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_t Z_t \qquad \qquad f(x) = \sum_t \alpha_t h_t(x)$$
 Weighted average of weak learners

$$f(x) = \sum_{t} \alpha_t h_t(x)$$



Boosting and Logistic Regression

Logistic regression:

- $\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$ • Minimize log loss
- Boosting:

- Define
 - $f(x) = \sum_{j} w_j x_j$
- Minimize exp loss $\sum_{i=1}^{m} \exp(-y_i f(x_i))$

where x_i predefined

- Define

features

 $f(x) = \sum_{t} \alpha_t h_t(x)$

(linear classifier)

where $h_t(x)$ defined dynamically to fit data

(not a linear classifier)

- Jointly optimize over all
- Jointly optimize over all \bullet Weights α_t learned per weights wo, w1, w2... \bullet Eric Xing \bullet CMU. 2006 iteration t incrementally

Hard & Soft Decision

Weighted average of weak learners

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

Hard Decision/Predicted label:

$$H(x) = sign(f(x))$$

Soft Decision: (based on analogy with logistic regression)

$$P(Y=1|X) = \frac{1}{1 + \exp(f(x))}$$

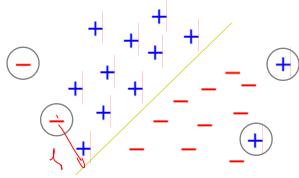
© Eric Xing @ CMU, 2006-2011

25

Effect of Outliers

Good © : Can identify outliers since focuses on examples that are hard to categorize

Bad 8: Too many outliers can degrade classification performance dramatically increase time to convergence



© Eric Xing @ CMU, 2006-2011

Summary

- Boosting takes a weak learner and converts it to a strong
- one
- Works by asymptotically minimizing the empirical error
- Effectively maximizes the margin of the combined hypothesis

© Eric Xing @ CMU, 2006-2011

37

Learning from weighted data

- Consider a weighted dataset
 - D(i) weight of *i* th training example (\mathbf{x}^i, y^i)
 - Interpretations:
 - *i* th training example counts as D(i) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, *i* th training example counts as D(i) "examples"
 - e.g., in MLE redefine *Count(Y=y)* to be weighted count

Unweighted data

$$Count(Y=y) = \sum_{i=1}^{m} \mathbf{1}(Y^{i}=y)$$

Weights D(i) $Count(Y=y) = \sum_{i=1}^{m} D(i)1(Y^{i}=y)$

© Eric Xing @ CMU, 2006-2011

					,		
Moder	Task.	Iuput	output	Loss loty hypothers	opt algumen.	GAV/DI)	
DŢ.	Classifia	XGR" XG R"	д ^т ХС1 <i>Ь</i>] ^h	yec#), oli9 4	greedy	D	
lu/	С	Y	-1	eleihal.	?	1	
				© Eric Xing @ CMU, 2006-2011			39

