Machine Learning
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Recap: the SVM problem 4

e We solve the following constrained opt problem:

m 1 m
max, J(a)=2¢, > > aa;y,y;(x/x;)
i=1

i,j=1

st. «,20, i=1....m
Za[yi =0.
i1

e Thisis a quadratic programming problem.
e A global maximum of g, can always be found.

m

e The solution: W= zaiyixi
i-1

e How to predict:

W Xpew + b <0
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Non-linearly Separable Problems

g. (@]
J
O Class 2
Xj
W o
5] xi ©
O @ 5
] ¢ wix4+b=1
T —
Class 1 wix+b=0

wix4+b=-1

e We allow “error” & in classification; it is based on the output of
the discriminant function w’x+b

e & approximates the number of misclassified samples
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Soft Margin Hyperplane

e Now we have a slightly different opt problem:
. 1 w
min,, EW W+CZ§
i=1

y,(wW'x, +b)21-&, Vi
£20, Vi

s.t

& are “slack variables” in optimization

Note that =0 if there is no error for x;

&; is an upper bound of the number of errors

C : tradeoff parameter between error and margin
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Lagrangian Duality, cont. 5
e Recall the Primal Problem:
min mMax,, 5,0 L(w,a,p)
e The Dual Problem:
maX, 5.0 min £ (w,a, f)
e Theorem (weak duality):
d =max, ,,.omin, L(wa,p) < min max,,, ., L(w.a f)=p
e Theorem (strong duality):
Iff there exist a saddle point of £2(w,a, f), we have
d = p*
[ X X ]
A sketch of strong and weak sels
duality -

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d" =max, omin, f(w)+a’g(w) < min,max, .o £(w)+a’g(w) = p’

JS(w)

g(w)
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A sketch of strong and weak selt
duality -
e Now, ignoring A(x) for simplicity, let's look at what's happening |
graphically in the duality theorems.
d" =max, omin, f(w)+a’g(w) < min, max,., f(w)+a'gw)=p’
S (w)
gw)
[ X X ]
[ X X X
0000
» T
The KKT conditions :

e If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

i,é’(w,a,,B)=0, i=1...k
ow,

1

O ptwa,f)=0, i=1..I

p;
a,g,(w)=0, i=1...m
gwW)<0, i=1l....m
a, 20, i=1....m

e Theorem: If w*, o* and S* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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The Optimization Problem 5
I
e The dual of this new constrained optimization problem is
m 1 m T
max, ]((1) = ;at _E ,Zlaia/yiy-/ (X[ X_/)
i= ij=
st. 0<¢g,<C, i=1....m
zaiyi =0.
i=1
e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o
now
e Once again, a QP solver can be used to find o;
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The SMO algorithm

e Consider solving the unconstrained opt problem:

max Wi(ay, ag,...,a.n)
(e

e We've already see three opt algorithms!
e Coordinate ascent
e Gradient ascent
e Newton-Raphson

e Coordinate ascend:
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Coordinate ascend -

[ X X ]

0000

HH
Sequential minimal optimization 4

e Constrained optimization:

m 1 m
max,, j(a):zai_g Zaiajyiyj(XfTXj)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i ay, = 0.
i=1

e Question: can we do coordinate along one direction at a time

(i.e., hold all ¢, fixed, and update «;?)

© Eric Xing @ CMU, 2006-2010
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The SMO algorithm

Repeat till convergence

1. Select some pair ¢; and ¢, to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(«) with respect to ¢; and «;, while holding all the other
a;'s (k #1; j) fixed.

Will this procedure converge?

o000

0000

coee
Convergence of SMO °e

m 1 m
max,, j(a)zzai_Ezaiajyiyj(xfTXj)
i=1

ij=1

st. 0<a, <C, i=1,...k

KKT:

Zaiyi =0.
i=1
e Letshold ;,..., , fixed and reopt Jw.r.t. ¢, and «,
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Convergence of SMO :
e The constraints: .
a1y +agys = §
0<a;<C %H """""""""""""""""" oy ey =
0<a, <C
e The objective: L 1
Jlar, ag,. .., ) = T (€ — a2y2)y1. 2, . . ., )
e Constrained opt:
[ X X ]
0000
0000
. 82t
Cross-validation error of SVM :

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

#support vectors
# of training examples

Leave-one-out CV error =

H1 @
‘\_\ .

@
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Advanced topics in Max-Margin selt
Learning -
max, J(@)=3 a5 ¥ aamy, (ix)
i=1 i,j=1
W Xpew +b S0
e Kernel
e Point rule or average rule
e Can we predict vec(y)?
[ X X ]
0000
s
Outline -

e The Kernel trick

e Maximum entropy discrimination

e Structured SVM, aka, Maximum Margin Markov
Networks

© Eric Xing @ CMU, 2006-2010 18




(1) Non-linear Decision Boundary

|
e So far, we have only considered large-margin classifier with a

linear decision boundary
e How to generalize it to become nonlinear?

e Key idea: transform x; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?
e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)

o000

0000

coee
The Kernel Trick °e

e |[s this data linearly-separable?

0 X
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The Kernel Trick

e Recall the SVM optimization problem
max, ]((1) ZOI 5 Za 'yiy_/(xirxj)
l/ =1

st. 0<¢g,<C, i=1....m

m
Zaiyi =
i=1

e The data points only appear as inner product

e Aslong as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(xi,x‘,)=¢(xi)T¢(x‘,)
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Il. The Kernel Trick

e Computation depends on feature space
e Bad if its dimension is much larger than input space

max Za ——Za a,y,y K ( )

7]-1

st. @20, i=1...k

m
Zaiyi =
i=1

Where K(x;,x;) = $(x)* (x;) y*(z) = sign( > al.yl.K(Xl. , z)+ bJ

ieSV
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Transforming the Data

Input space Feature space

e Computation in the feature space can be costly because it is high

dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue

© Eric Xing @ CMU, 2006-2010

23

An Example for feature mapping
and kernels

Consider an input x=[x;,x,]

Suppose ¢(.) is given as follows

q{[xl _J =1, \/Exl, \/Exz , xf , x22 , \/§x1x2

An inner product in the feature space is

G-

So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,x')= (1+xTx‘)2
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functions o
e Linear kernel (we've seen it)
K(x,x)=x"x'
e Polynomial kernel (we just saw an example)
K(x,X') = (1+ xTx‘)”
where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)
e Radial basis kernel
. 1 i12
K(x,x") = exp(—§||x—x||
In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel .
e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(z.2) = (272 4+ ¢)?
e How many dimensions we've got in the new space?
e How many operations it takes to compute K()?
e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)
I\—( I' ""] — (_\YIJ ( -— M)
T ’ 202
e Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢x) is?
© Eric Xing @ CMU, 2006-2010 26
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Kernel matrix

I
e Suppose for now that K is indeed a valid kernel corresponding

to some feature mapping ¢, then for x,, ..., X,,, we can
compute an mxm matrix K = {K; ;}, where K, ; = o(x:)7 o(x;)

e This is called a kernel matrix!

e Now, if a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it

must satisfy:
e Symmetry K=K"
proof Ki; = olx;)Tolx;) = olx;)Tolx;) = K,
e Positive —semidefinite Yy Ky>0 Wy
proof?
© Eric Xing @ CMU, 2006-2010 27
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Mercer kernel :

Theorem (Mercer): Let K: R" x R" — R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {x;.....x,}, (m < o0), the corresponding kernel matrix
is symmetric positive semi-denite.
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SVM examples
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(2) Model averaging :
e Inputs x, classy = +1, -1 .
e data D = { (x0.y1), .. XY } .o
e Point Rule: - .
e learn fort(x) discriminant function - _“:___ ::_-‘_
from F = {f} family of discriminants -
e classify y = sign fort(x)
e E.g., SVM
FOPYUx) = W Xpew + b
© Eric Xing @ CMU, 2006-2010 30
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Model averaging

e There exist many f with near optimal performance

e Instead of choosing fort,
average over all f in F

Q(f) = weight of f
y(z) = sign / Q) f(x)df
Jr
= Hii-’;“U(i'))Q

e How to specify:
F = { f } family of discriminant functions?

e Howto learn Q(f) distribution over F?

© Eric Xing @ CMU, 2006-2010 31

Recall Bayesian Inference

e Bayesian learning:

Po(w)
~ Bayes Learner —— p(w|D)

D= {(x;.y;}};-\;l/

Bayes Thrm : p(w|D) =

p(w)p(D|w)
p(D)
e Bayes Predictor (model averaging):

/b p(w) f(x,y; w)dw

hy (X: p(w)) = arg max
(x)

Recall in SVM: /i (s w ) = arg max Flxyiw)
’ yEV{x)

e What p,?
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How to score distributions?

e Entropy

e Entropy H(X) of a random variable X

-
H(X) ==Y P(z=i)log, P(zx = i)

e H(X) is the expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

e Why?
Information theory:

Most efficient code assigns -log,P(X=i) bits to encode the message X=I,
So, expected number of bits to code one random X is:

N
- Z Pz =i)log, P(x =1)
i=1

[ X X ]

[ X X X

ece’
Maximum Entropy Discrimination |22

e Givendataset D = {(x;,y:)}; . find

Qume = argmax H(Q)
s.t. Y {(F(X)) oup = &ir Vi
&>0 Vi
e solution Q,,c correctly classifies D

e among all admissible O, O,z has max entropy
e max entropy mmmp "Minimum assumption” about f
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Introducing Priors

e Prior Oy(f) Qo

D(Q, Qo) = ]\'L(Q”Qu)

e Minimum Relative Entropy
Discrimination

Qure = argmin KL(Q|Qq) + U(€)

s.t. Y (SO ope = s Vi
& >0 Vi

e Convex problem: O,z unique solution
e MER =) “minimum additional assumption” over O, about f

[ X X ]

0000

HH
Solution: Q e as a projection o

e Convex problem: Q,,, unique

a=0 uniform
e Theorem: \Qo

aME

N
Qure o exp{Y_ aif(ziw)}Qo(w)
i=1 admissible Q

a; > 0 Lagrange multipliers

e finding Q,, : start with «; = O and follow gradient of unsatisfied
constraints
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Solution to MED -
e Theorem (Solution to MED):
Posterior Distribution: .
QW) = 5 Qo(w) exp { Zmya[f(x,-:W)]}
Dual Optimization Problem:
D1: max — log Z(a) — U™ (a)
st ai(y) =0, Vi,
U*(:) is the conjugate of the U{:), i.e., U*(a) = supy (EL_\_ a;(v)& — ('{E])
e Algorithm: to computer ¢, , t=1,..T
e start with ¢, = O (uniform distribution)
e iterative ascent on J(e) until convergence
© Eric Xing @ CMU, 2006-2010 37
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Examples: SVMs :

e Theorem

For f{x) =w'x + b, Qy(w) = Normal( 0, 1), Q,(b) = non-informative prior,
the Lagrange multipliers « are obtained by maximizing J(«) subject
to 0<o, <Cand X, a,y, = 0, where

J(a) = Z [(l( + log(1 — fu/C'}] — %Z (1,,.(1;;,!,\.;,';.1':“1';

i s,

e Separable D =mp SVM recovered exactly

e Inseparable D == S\VM recovered with different
misclassification penalty

© Eric Xing @ CMU, 2006-2010 38
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SVM ext ' o
extensions o
I
e Example: Leptograpsus Crabs (5 inputs, T,;,;=80, T,.=120)
I__,__l_....._._....._.:"":
%% " Linear
2 \ SVM
g08 - .
g Max Likelihood Gaussian
%w\\\
IOS MRE Gaussian
%% 01 02 03 04 05
false nositi
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(3) Structured Prediction :
e Unstructured prediction
® T
=
’ X1 X1zo... n
. x=| ¥Xn X2 ... y=| ¥
& ] : : :
e Structured prediction
e Part of speech tagging
X = “Doyouwantsugarinit?” = ¥ = <verb pron verb noun prep pron>
e Image segmentation
= X1 X1z L N R
x=| X2 X2 ... y=| ¥ Y2 ...
© Eric Xing @ CMU, 2006-2010 40
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OCR example e
X y
JJ il = b
Sequential structure
v (@ e Ha )Ha He)
' |
< I il Gd [l =
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Classical Classification Models .
e |nputs:
e aset of training samples D = {(x;, %)}, , where
Xi = [,},:’ res .,r}’]Tand yeC2 {ev,ea - iep}
e Outputs:
e apredictive function h(x):  y* = h(x) £ argmax F(x,y)
o
F(x,y) = w' f(x,y)
e Examples: .
e SVM: max %wTw+(';£;: st. wlAf(y) > 1 =&, Vi, Vy.
N
e Logistic Regression: max £(D;w) éZIngp(y,-lx,-)
i=1
where o exp{w f(x,y)}
plylx) = 2 expiw T (xy)}
© Eric Xing @ CMU, 2006-2010 42
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Structured Models

h(x) = argmax F(x,y)
yeEV(x)
discriminant function
space of feasible outputs

e Assumptions:

F<X7Y) =W f f<Xp7YP)

e Linear combination of features

e Sum of partial scores: index p represents a part in the structure

e Random fields or Markov network features:

o000

0000

[ X XX )
. . . . . o2
Discriminative Learning Strategies o

e Max Conditional Likelihood
e We predict based on:

N 1
Y Ix=argmax p, (1) = o exp{gwcfc(x,yf)}

e And we learn based on:

Wiy, x }=argmax[ T p, (v, 1x) =] Z(Wl 3 exp{chfc(X,-,yi)}

e Max Margin:
e We predict based on:

y"|x=arg maXZerC (x,y.)=argmaxw’ £(x,y)
y = y

e And we learn based on:

Wy} =argma min w (£(y,.) = 7))

© Eric Xing @ CMU, 2006-2010 44
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E.g. Max-Margin Markov secs
[ X ]
Networks o
e Convex Optimization Problem:
1 N
PO (M®N) : lg;y §||w||2 +cZg,—
stViVYy #yi: w Afi(xy) > Ali(y) —&. & >0,
e Feasible subspace of weights:
Fo={w: wIAfi(x,y) > Ali(y) — &: Vi.Vy # yi}
e Predictive Function:
ho(x;w) = arg max F(x,y;w)
yeY(x)
© Eric Xing @ CMU, 2006-2010 45
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OCR Example :
e We want:
argmax,,q.q W' f(Ffad ,word)="brace”
e Equivalently:
wT( “brace”) > wT (XM “aaaaa”)
wTf( ,‘brace”) > wTf( ,‘aaaab”)
wTf( “brace”) > wTf( “22227")
© Eric Xing @ CMU, 2006-2010 46

23



Min-max Formulation

e Brute force enumeration of constraints:
min 1| lw||?
2
wiE(xy*) > wf(xy) +6y",y). Yy
e The constraints are exponential in the size of the structure

e Alternative: min-max formulation
e add only the most violated constraint
I T
y' = arg max[w f(x;,y) + (yi,y)]
YFEYy*

add to QP 1 w'f(x;,yi) > w'f(xi, ) + £(vi.¥")
e Handles more general loss functions

e Only polynomial # of constraints needed

e Several algorithms exist ...
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Results: Handwriting Recognition

O raw BEquadratic 0O cubic

307 pixels kernel kernel

Length: ~8 chars

3]
Letter: 16x8 pixels §
. 8 251
10-fold Train/Test S lbetter
5000/50000 letters 2 5o
600/6000 words g
g 15 1
>
Models: 8
Multiclass-S error reduction over multiclass
M3 nets % 5 I SVMS I
S
0 . .
MC-SVMs M”3 nets
(@)
PP299 9999
. NALEE NEHAE
Crammer & Slngel’ 01 © Eric Xing @ CMU, 2006-2010 48
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Discriminative Learning Paradigms o
|
SVM  .° :..4 5 M3N
coNE | = | 0000
y o S|gn(w 5 _|_ b) y = arg max F(x v W
min 3 w||2+('_>:;1.<, min  SIwIP+C Llf
w X b)) =1 &, Vi ﬂ w'[f(xﬂ f(x'. 3] = £(y'¥) — &, Wiy £y
MED . e . MED-MN
. . —) |= SMED +Bayesian M3N
y = sign({£(x, W)} g )}
g K@) ) See [Zhu and Xing, 2008]
k"’(f(-“'):‘:,:l‘fa- Vi
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Summary :

e Maximum margin nonlinear separator
e Kernel trick
e Projectinto linearly separatable space (possibly high or infinite dimensional)
e No need to know the explicit projection function

e Max-entropy discrimination
e Average rule for prediction,

e Average taken over a posterior distribution of w who defines the separation
hyperplane

e P(w) is obtained by max-entropy or min-KL principle, subject to expected
marginal constraints on the training examples
e Max-margin Markov network
e Multi-variate, rather than uni-variate output Y
e Variable in the outputs are not independent of each other (structured input/output)
e Margin constraint over every possible configuration of Y (exponentially many!)
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