Machine Learning

10-701/15-781, Fall 2011
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Recap: the SVM problem 4

e We solve the following constrained opt problem:
m 1 m
max, J(a)= Zat 2 Zaia,iyiyj xx;)
i=1 i,j=1

st. «,20, i=1....m
Za[yi =0.
i1

e Thisis a quadratic programming problem.
e A global maximum of g, can always be found.

e The solution: w= 2“;)’1‘)([ =35 v()({ U K

16S

e How to predict: WTX“..“- +b <0
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Non-linearly Separable Problems

|
st y.(wx +b)>1 Vi

O -
Class 2 gjl
(@)
: X
[ Xi
= //g‘
] ¢ wix4+b=1
T —
Class 1 wix+b=0

wix4+b=-1

e We allow “error” & in classification; it is based on the output of
the discriminant function w’x+b

e & approximates the number of misclassified samples
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Soft Margin Hyperplane

e Now we have a slightly different opt problem:

min,,, ;WTW+C mé g"l\
\ i-1
y,(wW'x, +b)21-&, Vi

s.t
G0

& are “slack variables” in optimization

Note that =0 if there is no error for x;

&; is an upper bound of the number of errors

C : tradeoff parameter between error and margin
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Lagrangian Duality, cont. -
. . .
e Recall the Primal Problem: , {() + J'j 10

min, max, ;.o £(w,a, f)

e The Dual Problem:
maX, 5.0 min £ (w,a, f)

e Theorem (weak duality):

d =max, ,,.omin, L(wa,p) < min max,,, ., L(w.a f)=p

e Theorem (strong duality):
Iff there exist a saddle point of £2(w,a, f), we have
d* — p*
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A sketch of strong and weak
duality
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e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d" =max, o min, f(w)+a’g(w) < min,max, o £(w)+a’g(w) = p’
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A sketch of strong and weak
duality

e Now, ignoring /A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d”=max,.omin, f(w)+a’g(w) < min max,., f(w)+a’g(w)=p’
pv,‘m[. .
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A sketch of strong and weak [ = sels
. % o
duality / h! T

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.
d” =max, omin, f(w)+a'g(w) < min max,., f(w)+a'gw)=p’
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The KKT conditions

I
e |[f there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)

conditions:
0 .
I\ —L(wa,p)=0, i=1....k
ow,
0 .
—Lwa,p)=0, i=1...,1
S B
o,g,(w)=0, i=1....m
gwm<0, i=1....m
20, i=1...,m

e Theorem: If w*, o* and S* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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The Optimization Problem

e The dual of this new constrained optimization problem is

m 1 m
max,, j(a)zZai—E Zaiajyiyj(xfTXj)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i ay, = 0.
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o
now

e Once again, a QP solver can be used to find o;
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The SMO algorithm &
e Consider solving the unconstrained opt problem:
max Wi(ay, ag,...,a.n)
e We've already see three opt algorithms!
e Coordinate ascent
e Gradient ascent
e Newton-Raphson
e Coordinate ascend:
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Coordinate ascend .
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Sequential minimal optimization

e Constrained optimization:
m 1 m T
max, ](a) = Zai 5 Zaiajyiyj (X[ X_/)
o027 "

st. 0<¢g,<C, i=1....m

i .y, = 0.
i=1

e Question: can we do coordinate along one direction at a time
(i.e., hold all ¢, fixed, and update ¢;?) - s
At = -~ oly K-t Tolgey
di Adit al | lusg W

A
KX—/ o = ol; 4 4o

o000

0000

HH
The SMO algorithm °e

Repeat till convergence

1. Select some pair ¢; and ¢; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(e) with respect to ¢; and «;, while holding all the other
o, 's (k #i; j) fixed.

Will this procedure converge?
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Convergence of SMO '

max,, ]((1) = iat _% ia[a/'yiyj (XiTX‘/)
st. 0<e,<C, i=1...k
KKT: $ o =0
e Letshold o;,..., ¢, fixed and reopt Jw.r.t. ¢, and «,

[ X X ]
0000
HH

Convergence of SMO -

e The constraints:

a1y1 + agys = §

0<ao, <C
—_—

i1 12)
oy ey =L

0<a,<C

e The objective:

e Constrained opt:
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Cross-validation error of SVM

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

#support vectors
#of training examples

Leave-one-out CV error =

H1 @
N ®

2 N/
A VAW

® \Q\ \\_<‘x~ =+1
@

wx-b=0
s;o\h
w-x—b=-1

@
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Advanced topics in Max-Margin
Learning '

m 1 m
max, /(a)= Zai ) Zaia‘,y,vyj (XiTX./)
i=1

i,j=1

_ WTxuu-u' + b § 0 W = z&i)('{
2ot v ) HY fesu
V
e Kernel ‘Fm.ka\ = dﬂ\\ \%(Kﬂ

e Point rule or average rule W ~ f(‘/\/)

A
e Can we predict vec(y) @t{f\ .-(\ O=0-U 2
bob
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Outline :
e The Kernel trick
e Maximum entropy discrimination
e Structured SVM, aka, Maximum Margin Markov
Networks
[ X X J
0000
HH
(1) Non-linear Decision Boundary |:¢

e So far, we have only considered large-margin classifier with a
linear decision boundary

e How to generalize it to become nonlinear?

e Key idea: transform x; to a higher dimensional space to “make
life easier”

e Input space: the space the point x; are located h T
e Feature space: the space of ¢(x;) after transformation
e Why transform? X = ‘E“‘)
e Linear operation in the feature space is equivalent to non-linear operation in input

space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)
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The Kernel Trick -
e |Is this data linearly-separable?
*—0 8 3 »—O%—O—O—‘—‘x
e How about a quadratic mapping ¢(x;)? ”vv(\'v
[ X X ]
[ X X X
s
The Kernel Trick -

e Recall the SVM optimization problem

m 1 m
max,, j(a):zai_g Zaiajyiyj(XfTXj)
i=1

ij=1

st. 0<¢g,<C, i=1....m
Zaiyizo'
i1

e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products l,;‘,\\\dui Af,l;] widy fmq,

e Define the kernel function K by K(x,,x,)=g(x,)" #(x,)
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lI. The Kernel Trick o
e Computation depends on feature space
e Bad if its dimension is much larger than input space
m 1 m T
max,, Zai 5 Zaia/.yl.yjK(xi ,X_/.) f(\;— . )(:.}
i=1 i,j=1
st. «,20, i=1...k kL (%{X'ML%)

i ay; = 0.
i=1

ieSV

Where K(x,x) = $06) 6(x)  y*(z) = sign( S ayK(x,,z)+ bj

[ X X ]

esce

. [ L
Transforming the Data -

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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An Example for feature mapping
and kernels

e Consider an input x=[x,,x,]
e Suppose #.) is given as follows
{{[? ] =1,42x,2x,, 5%, 5%, V2x,x,
2|
e An inner product in the feature space is
<¢ﬂxl P¢[ . P> = 120l teen B2 s dn) K
X 1) \[*2]) l’fx Xw,]
e So, if we define the kernel funct|on as follows, there is no

need to carry out ¢(.) e

K(x,X') =(1+xTx‘)2
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functions :
e Linear kernel (we've seen
K(x,x)=x"x'
e Polynomial kernel (we just saw an example) %, . )
K(x,x‘)=(1+xTx‘)” [é: U/ﬁ
n)
where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)
e Radial basis kernel )
. _ bt )b
K(x,x") =exp| — |x x||
In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel :
e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(z,2)= (T2 +¢)*
e How many dimensions we've got in the new space?
e How many operations it takes to compute K()?
e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)
: llz = 2|)?
K(z,z) =exp(— ———
(w.2) =exp (= = 5—)
e s this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢(x) is?
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Kernel matrix :

e Suppose for now that X is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., X,,, we can
compute an mxm matrix & = {K; ;}, where K; ; = o(x:)" o(x;)

e This is called a kernel matrix!

e Now, if a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it

must satisfy:
e Symmetry K=KT
proof K;; = 0{,1';)1—0(.!';) = L'J(-!‘j)TG(-!‘J] =K
e Positive —semidefinite yTKy>0 Yy
proof?
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Theorem (Mercer): Let K: R" x R" + R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {x;,...,: tm}, (M < o0), the corresponding kernel matrix
is symmetric positive semi-denite.
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