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Recap: the SVM problem
We solve the following constrained opt problem:
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This is a quadratic programming problem.
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A global maximum of αi can always be found.

The solution:

How to predict: 
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Non-linearly Separable Problems
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We allow “error” ξi in classification; it is based on the output of 
the discriminant function wTx+b
ξi approximates the number of misclassified samples

Class 1
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Soft Margin Hyperplane
Now we have a slightly different opt problem:
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ξi are “slack variables” in optimization
Note that ξi=0 if there is no error for xi

ξi is an upper bound of the number of errors
C : tradeoff parameter between error and margin
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Lagrangian Duality, cont.
Recall the Primal Problem:
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The Dual Problem:

Theorem (weak duality): 

),,(maxmin ,, βααβα w
iw L0≥

),,(minmax ,, βααβα wwi
L0≥

** )(i)(id ≤ ββ LL

Theorem (strong duality):
Iff there exist a saddle point of                   , we have
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A sketch of strong and weak 
duality

Now, ignoring h(x) for simplicity, let's look at what's happening 
graphically in the duality theorems.
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A sketch of strong and weak 
duality

Now, ignoring h(x) for simplicity, let's look at what's happening 
graphically in the duality theorems.
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A sketch of strong and weak 
duality

Now, ignoring h(x) for simplicity, let's look at what's happening 
graphically in the duality theorems.
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The KKT conditions
If there exists some saddle point of L, then the saddle point 
satisfies the following "Karush-Kuhn-Tucker" (KKT) g ( )
conditions:
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Theorem: If w*, α* and β* satisfy the KKT condition, then it is also a 
solution to the primal and the dual problems.
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The Optimization Problem
The dual of this new constrained optimization problem is
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This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi 
now
Once again, a QP solver can be used to find αi
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The SMO algorithm
Consider solving the unconstrained opt problem:

We’ve already see three opt algorithms! 
Coordinate ascent 
Gradient ascent 
Newton-Raphson

Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
Constrained optimization:
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Question: can we do coordinate along one direction at a time 
(i.e., hold all α[-i] fixed, and update αi?)
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The SMO algorithm

Repeat till convergence

1. Select some pair αi and αj to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J(α) with respect to αi and αj, while holding all the other 
αk 's (k ≠ i; j) fixed.k ( ; j)

Will this procedure converge?

14© Eric Xing @ CMU, 2006-2010



8

Convergence of SMO
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KKT:

Let s hold α3 ,…, αm fixed and reopt J w.r.t. α1 and α2
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Convergence of SMO
The constraints:

The objective:j

Constrained opt:
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Cross-validation error of SVM
The leave-one-out cross-validation error does not depend on 
the dimensionality of the feature space but only on the # of y p y
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave =
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Advanced topics in Max-Margin 
Learning
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Point rule or average rule

Can we predict vec(y)?
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Outline

The Kernel trick

Maximum entropy discrimination

Structured SVM, aka, Maximum Margin Markov 
Networks 
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(1) Non-linear Decision Boundary
So far, we have only considered large-margin classifier with a 
linear decision boundaryy
How to generalize it to become nonlinear?
Key idea: transform xi to a higher dimensional space to “make 
life easier”

Input space: the space the point xi are located
Feature space: the space of φ(xi) after transformation

Why transform?y
Linear operation in the feature space is equivalent to non-linear operation in input 
space
Classification can become easier with a proper transformation. In the XOR 
problem, for example, adding a new feature of x1x2 make the problem linearly 
separable (homework)
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Is this data linearly-separable?

The Kernel Trick

How about a quadratic mapping φ(xi)?
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The Kernel Trick
Recall the SVM optimization problem
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The data points only appear as inner product
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As long as we can calculate the inner product in the feature 
space, we do not need the mapping explicitly
Many common geometric operations (angles, distances) can 
be expressed by inner products
Define the kernel function K by )()(),( j

T
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Computation depends on feature space
Bad if its dimension is much larger than input space

II. The Kernel Trick

g p p
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Transforming the Data
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Feature spaceInput space
Note: feature space is of higher 

Computation in the feature space can be costly because it is high 
dimensional

The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

Note: feature space is of higher 
dimension than the input space in 
practice
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An Example for feature mapping 
and kernels

Consider an input x=[x1,x2]
Suppose φ( ) is given as followsSuppose φ(.) is given as follows

An inner product in the feature space is
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So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly
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More examples of kernel 
functions

Linear kernel (we've seen it)

')'( xxxx TK

Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order 
polynomial terms of the components of x (weighted appropriately)
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Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel
Feature mapping, but “without paying a cost”

E.g., polynomial kernelg p y

How many dimensions we’ve got in the new space?
How many operations it takes to compute K()?

Kernel design, any principle?
K(x,z) can be thought of as a similarity function between x and z
This intuition can be well reflected in the following “Gaussian” functionThis intuition can be well reflected in the following Gaussian  function
(Similarly one can easily come up with other K() in the same spirit)

Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many 
dimension φ(x) is?
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Kernel matrix
Suppose for now that K is indeed a valid kernel corresponding 
to some feature mapping φ, then for x1, …, xm, we can pp g φ, 1, , m,
compute an m×m matrix               , where

This is called a kernel matrix!

Now, if a kernel function is indeed a valid kernel, and its 
elements are dot-product in the transformed feature space, it 

t ti fmust satisfy:
Symmetry K=KT

proof

Positive –semidefinite
proof? 
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Mercer kernel 
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SVM examples
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