Machine Learning

10-701/15-781, Fall 2011
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Univariate prediction without sels
using a model: good or bad? -

e Nonparametric Classifier (Instance-based learning)
e Nonparametric density estimation
e K-nearest-neighbor classifier
e Optimality of kKNN

e Spectrum clustering
e Clustering
e Graph partition and normalized cut
e The spectral clustering algorithm

e Very little “learning” is involved in these methods

e But they are indeed among the most popular and powerful
“machine learning” methods
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Classification :
e Representing data:
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Clustering :
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Supervised vs. Unsupervised selt
Learning -

|
/
X classitier output
T Teacher
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Decision-making as dividing a sels
high-dimensional space 4
e Classification-specific Dist.: P(X|Y)
., | S8 00
1" p(X |Y =1) Se? %Q:U ‘
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. 4 Abnormal

pPX|Y =2)
= P (X5 i, 2)

e Class prior (i.e., "weight"): P(Y)
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The Bayes Decision Rule for selt
Minimum Error o
e The a posteriori probability of a sample
iy PCXTY =DPEY =) _ mp (XY = I) —q
TS N JETcq T R
e Bayes Test:
e Likelihood Ratio:
o(X)=
e Discriminant function:
h(X)=
[ X X ]
[ X X X
s
Example of Decision Rules '

e When each class is a normal ...

X2
b Ppy(X)

X 4

e We can write the decision boundary analytically in some
cases ... homework!!
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Bayes Error

o We must calculate the probability of error
e the probability that a sample is assigned to the wrong class

e Given a datum X, what is the risk?

(X)) = min[g (X), g2(X)]
e The Bayes error (the expected risk):
e = E[r(X) = /r’(:}.‘)p{;r:)d;r:
= /11|iu[7r.;p|(;c),_?r-_;pz(:r)]d.{r

= 7r|/ p1(:tr)a':t-'+7rr_;/ po(x)dx
1 Lo

= mi€] + MaE2
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More on Bayes Error oo

e Bayes error is the lower bound of probability of classification error

e Bayes classifier is the theoretically best classifier that minimize
probability of classification error

e Computing Bayes error is in general a very complex problem. Why?
e Density estimation:

e Integrating density function:

+oo In(my /7o)
€1 :/ pi(z)dz €2 = pa{x)dr
1

n(my fm2) —o0
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Learning Classifier

e The decision rule:

A(X) = —Inpy(X) + lnpg(X)Z I ™

T2
e Learning strategies

e Generative Learning

e Discriminative Learning

e Instance-based Learning (Store all past experience in memory)
A special case of nonparametric classifier

e K-Nearest-Neighbor Classifier:
where the h(X) is represented by ALL the data, and by an algorithm
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Recall: Vector Space
Representation

e Each document is a vector, one

component for each term (= word).

Doc 1 Doc 2 Doc 3
Word 1 3 0 0
Word 2 0 8 1
Word 3 12 1 10
0 1 3
0 0 0

e Normalize to unit length.

e High-dimensional vector space:
e Terms are axes, 10,000+ dimensions, or even 100,000+

e Docs are vectors in this space
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2-Nearest Neighbor (kNN) secs
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K-Nearest Neighbor (kNN)
classifier
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Voting kNN

@ Sports
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Classes in a Vector Space
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kNN Is Close to Optimal 5
e Cover and Hart 1967
e Asymptotically, the error rate of 1-nearest-neighbor
classification is less than twice the Bayes rate [error rate of
classifier knowing model that generated data]
e In particular, asymptotic error rate is 0 if Bayes rate is 0.
e Decision boundary:
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Where does kNN come from? .

e How to estimation p(X) ?

e Nonparametric density estimation

e Parzen density estimate

E.g. (Kernel density est.):

N
PX) = % Z w(X — ;)
i=1
. 1 k(X
More generally: p(X) = E %
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Where does kNN come from? .
e Nonparametric density estimation
B 1 k(X)
e Parzen density estimate 5 _—_—
X)) =5
o kNN density estimate  p(X) = %(:i(_}{l))
e Bayes classifier based on kNN density estimator:
pl(X) (kl _1)N—2V2(X)> m
h(X) = -1 = -1 - In —
(X) " pa(X) e —DNI(X) < 7o
e Voting kNN classifier
Pick K; and K, implicitly by picking K;+K,=K, V,=V,, N;=N,
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Asymptotic Analysis :

e Condition risk: 1 (X,Xyn)
e Testsample X
e NN sample Xy
e Denote the event X is class | as X<l

Assuming k=1

(X, Xan) = .”r{{X 1 & Xyn = 2bor {X ©2& Xyy = 1}|x.f\’_\-,\-}

= m{{x o1& Xy o 21+ Pri{X = 2 & Xy — 1}|X, X_\'_\'}

=q(X)g(Xyn) + @ X)a(Xan)

e When an infinite number of samples is available, X\, will be so close to X

ri(X) =20 (X)ga(X) = 26(X)
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Asymptotic Analysis, cont. 5
e Recall conditional Bayes risk:
(X)) = min[q1(X), g2(X)]
= é - _},\.-’I - 4&(X)
_i%(?— ;3)‘5;[‘\'] This is called the MacLaurin series expansion

e Thus the asymptotic condition risk
ri(X) = 26(X) < 2r*(X)

e It can be shown that € < 2¢”

e This is remarkable, considering that the procedure does not use any information
about the underlying distributions and only the class of the single nearest
neighbor determines the outcome of the decision.
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In fact :
1
EE* SE;NN S FzNN S S E* S S FJNN S{:NN < 25*
e Example:
Pips(X) P2p2(X)
1 3 45 8
bttt e -
11? 1?? Ew = 6N
1 t T EoNN = 9N
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kNN is an instance of selt
Instance-Based Learning '

e What makes an Instance-Based Learner?
e A distance metric
e How many nearby neighbors to look at?
e A weighting function (optional)
e How to relate to the local points?
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Distance Metric :

e FEuclidean distance:

D(x,X') = \/Zaf(xi %)’

e Or equivalently,

D(x,X') = \/(x —x')'Z(x=x')

e Other metrics:

e L,norm: |x-X|

e L. norm: max |x-X'| (elementwise ...)

e Mahalanobis: where X is full, and symmetric

e Correlation

e Angle

e Hamming distance, Manhattan distance
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Case Study:
kNN for Web Classification

e Dataset
e 20 News Groups (20 classes)
e Download :(http:/people.csail.mit.edu/jrennie/20Newsgroups/)
e 61,118 words, 18,774 documents
e Class labels descriptions

comp.graphics

. . rec.autos scicrvpt
comp.os ms-windows misc . .
. rec.motorcveles sci.electronics
comp.svs.ibm pe hardware .
’ rec sport baseball scimed
comp sys mac hardware .
: rec.sporthockey sci.space

comp. windows x
talk politics misc | talk religion misc
misc forsale talk politics. guns alt atheism
talle politics mideast soc religion christian

[ X X ]
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Experimental Setup o

e Training/Test Sets:
e 50%-50% randomly split.
e 10runs
e report average results

e Evaluation Criteria:
Z I( predict, — true label.)

iclest sel

Accuracy =
“ # of test samples
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Results: Binary Classes 5
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Results: Multiple Classes :

Random select 5-out-of-20 classes, repeat 10 runs and average

Accuracy [ B/

®eq
nisr o.@ * 000090090949

0.4F __-': All 20 classes
o /

035+

03F 1

026+ b

© Eric Xing @ CMU, 2006-2011 30

15



Is KNN ideal? ... more later

© Eric Xing @ CMU, 2006-2011 31

Effect of Parameters

e Sample size
e The more the better
e Need efficient search algorithm for NN

Dimensionality

e Curse of dimensionality

Density

e How smooth?

Metric

e The relative scalings in the distance metric affect region shapes.
Weight

e Spurious or less relevant points need to be downweighted

e K

© Eric Xing @ CMU, 2006-2011 32




Sample size and dimensionality

Elenn] = enn + 51f(X)

—

001 [
n=8
Q\?M A0=2 b DT,
2 s

From page 316, Fukggmaga
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Neighborhood size

E&%)

8.0 |-
6.0 —
40 |-
A
BAYES —— a

20w - . e . e E_-—_—— -
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KNN for image classification: -
basic set-up o

Trombone

Jellyfish

German Shepherd

© Eric Xing @ CMU, 2006-2011 35
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Antelope Jellyfish German Shepherd Kangaroo Trombone
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10K classes, 4.5M Queries, 4.5M ceeee

Background image courtesy: Antonio Torralba
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KNN on 10K classes sel
e 10K classes %
e 4.5M queries 30
e Features S
o BOW g
e GIST 15~
5 T
10f - ]
0 . . -
200 1000 7k 10k
Deng, Berg, Li & Fei-Fei, ECCV 2010 # of Categories( log spacing )
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Nearest Neighbor Search in High | 8322
00
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Dimensional Metric Space 5
e Linear Search:
e E.g. scanning 4.5M images!
e k-D trees:
e axis parallel partitions of the data
e Only effective in low-dimensional data
e Large Scale Approximate Indexing
e Locality Sensitive Hashing (LSH)
e Spill-Tree
e NV-Tree
e All above run on a single machine with all data in memory, and scale to millions of
images
e Web-scale Approximate Indexing
e Parallel variant of Spill-tree, NV-tree on distributed systems,
e Scale to Billions of images in disks on multiple machines
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Locality sensitive hashing :
e Approximate KNN
e Good enough in practice
e Can get around curse of dimensionality
e Locality sensitive hashing
e Near feature points - (likely) same hash values
A - -
/ / / Hash table
© Eric Xing @ CMU, 2006-2011 40
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Example: Random projection 5
e h(x)=sgn (x-r), risarandom unit vector
e h(x) gives 1 bit. Repeat and concatenate.
e Prob[h(x) =h(y)]=1-06(x,y) /T
y X y X y
r X X
h(x) =0, h(y) =0 h(x) =0, hiy) =1
X
hix) =0, h(y) =1 hyperplane
X | Yy
000 101 Hash table
© Eric Xing @ CMU, 2006-2011 41
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Example: Random projection :
e h(x)=sgn (x-r), risarandom unit vector
e h(x) gives 1 bit. Repeat and concatenate.
e Prob[h(x) =h(y)]=1-06(x,y)/
y Yy
y r X X
X::B. h(x) = 0, h(y) = 0 h(x) = 0, h(y) = 0
h(x) =0, h(y) =0 hyperplane
X |
101 Hash table
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Locality sensitive hashing o2

Retreved NS |
A - -

/ / / Hash table

[ X X ]
HE

Locality sensitive hashing o

e 1000X speed-up with 50% recall of top 10-NN
e 1.2M images + 1000 dimensions

0.77
0.67
0.5¢
0.4r

0.3r

Percentage of exact NN retrieved

8.4 0.6 0.8 1 1.2 14 1.6
-3
Percentage of points scanned X 10
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Summary: Nearest-Neighbor secs
Learning Algorithm o
I
e Learning is just storing the representations of the training
examples in D
e Testing instance x:
e Compute similarity between x and all examples in D.
e Assign x the category of the most similar example in D.
e Does not explicitly compute a generalization or category
prototype
e Efficient indexing needed in high dimensional, large-scale
problems
e Also called:
e Case-based learning
e Memory-based learning
e Lazy learning
© Eric Xing @ CMU, 2006-2011 45
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Summary (continued) :

e Bayes classifier is the best classifier which minimizes the
probability of classification error.

e Nonparametric and parametric classifier

e A nonparametric classifier does not rely on any assumption
concerning the structure of the underlying density function.

e A classifier becomes the Bayes classifier if the density
estimates converge to the true densities
e when an infinite number of samples are used

e The resulting error is the Bayes error, the smallest achievable error given the
underlying distributions.

© Eric Xing @ CMU, 2006-2011
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Clustering

© Eric Xing @ CMU, 2006-2011
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Data Clustering

e Two different criteria
e Compactness, e.g., k-means, mixture models
e Connectivity, e.g., spectral clustering

Compactness

© Eric Xing @ CMU, 2006-2011

Connectivity
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Graph-based Clustering :
e Data Grouping
"‘\f\ . i
T W= fdx.x)
%oge?
e Image S|g;m‘entat|on
o Affinity matrix: W = [Wi,j]
e Degree matrix: D = diag(di)
[ X X ]
0000
[ X L1
. : ece
Affinity Function :

—HXi—XjHi

e Affinities grow as o grows >

am

L1

e How the choice of G value affects the results? ==

Q02

o What would be the optimal choice for G?

O ] ] E] o 0

© Eric Xing @ CMU, 2006-2011 50

25



00
- . [ X X X

A Spectral Clustering Algorithm | s22¢

Ng, Jordan, and Weiss 2003 o

I
e Given a set of points S={s;,...s,;}
—HSi—ZS;Hz

e Formthe affinity matrix ~ w, ; =e 7, Vvi#j), w;=0
o Define diagonal matrix D;= 2 a;,
e Form the matrix L=DvYawp1?

e Stack the k largest eigenvectors of L to for the columns of the new
matrix X: | | |

X=X X - X

e Renormalize each of X’s rows to have unit length and get new
matrix Y. Cluster rows of Y as points in R
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Why it works?

T
“" h‘aa‘,‘k ‘.:::‘
SOy
E g 1

2 i
!‘:': " o

TR

RS

e K-means in the spectrum space !
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More formally ...

e Spectral clustering is equivalent to minimizing a generalized
normalized cut

min Ncut(Al,Az...Ak)zzll[wt(dA*mj

A
segments
100
min Y 'DAWD 2y 10 o=
x
st Y'Y =1 Y=[o10
010
00 1]
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Toy examples o
3 v-?r1 |>~3l' "‘".
i -y
P B W «?E
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i Fy
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(d) (e) U}
Images from Matthew Brand (TR-2002-42)
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Spectral Clustering :
I
e Algorithms that cluster points using eigenvectors of matrices
derived from the data
e Obtain data representation in the low-dimensional space that
can be easily clustered
e Variety of methods that use the eigenvectors differently (we
have seen an example)
e Empirically very successful
e Authors disagree:
e Which eigenvectors to use
e How to derive clusters from these eigenvectors
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Summary :

e Two nonparametric methods:
e kNN classifier
e Spectrum clustering

e A nonparametric method does not rely on any assumption
concerning the structure of the underlying density function.

e Good news:
e Simple and powerful methods; Flexible and easy to apply to many problems.

e kNN classifier asymptotically approaches the Bayes classifier, which is
theoretically the best classifier that minimizes the probability of classification error.

e Spectrum clustering optimizes the normalized cut
e Bad news:
e High memory requirements
e Very dependant on the scale factor for a specific problem.
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