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Machine LearningMachine Learning

“Nonparametric” “Nonparametric” methodsmethods

Eric XingEric Xing

1010--701/15701/15--781, Fall 2011781, Fall 2011

Lecture 2, September 14, 2011

Reading:
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Univariate prediction without 
using a model: good or bad?

Nonparametric Classifier (Instance-based learning)
Nonparametric density estimationp y
K-nearest-neighbor classifier
Optimality of kNN

Spectrum clustering
Clustering
Graph partition and normalized cut
The spectral clustering algorithm

Very little “learning” is involved in these methods

But they are indeed among the most popular and powerful 
“machine learning” methods

2© Eric Xing @ CMU, 2006-2011



2

Classification
Representing data:

H th i ( l ifi )Hypothesis (classifier)
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Clustering
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Supervised vs. Unsupervised 
Learning
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Decision-making as dividing a 
high-dimensional space

Classification-specific Dist.: P(X|Y)
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Class prior (i.e., "weight"): P(Y)
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The Bayes Decision Rule for 
Minimum Error

The a posteriori probability of a sample
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Bayes Test:

Likelihood Ratio:
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Example of Decision Rules
When each class is a normal …

We can write the decision boundary analytically in some 
cases … homework!!
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Bayes Error
We must calculate the probability of error

the probability that a sample is assigned to the wrong classp y p g g

Given a datum X, what is the risk?

The Bayes error (the expected risk): 
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More on Bayes Error
Bayes error is the lower bound of probability of classification error

Bayes classifier is the theoretically best classifier that minimize 
probability of classification errorprobability of classification error
Computing Bayes error is in general a very complex problem. Why?

Density estimation:

Integrating density function: 
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Learning Classifier
The decision rule:

Learning strategies 

Generative Learning

Discriminative Learning

Instance-based Learning (Store all past experience in memory)
A special case of nonparametric classifier 

K-Nearest-Neighbor Classifier: 
where the h(X) is represented by ALL the data, and by an algorithm

11© Eric Xing @ CMU, 2006-2011

Recall: Vector Space 
Representation

Each document is a vector, one 
component for each term (= word)

Doc 1 Doc 2 Doc 3 ...
Word 1 3 0 0 ...
Word 2 0 8 1 ...
Word 3 12 1 10 ...

... 0 1 3 ...

component for each term (= word).

... 0 1 3 ...

... 0 0 0 ...

Normalize to unit length.
High-dimensional vector space:

Terms are axes, 10,000+ dimensions, or even 100,000+
Docs are vectors in this space
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Test Document = ?

Sportsp

Science

Arts
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1-Nearest Neighbor (kNN) 
classifier 

Sportsp

Science

Arts
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2-Nearest Neighbor (kNN) 
classifier 

Sportsp

Science

Arts
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3-Nearest Neighbor (kNN) 
classifier 

Sportsp

Science

Arts
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K-Nearest Neighbor (kNN) 
classifier 

Sports

Voting kNN

p

Science

Arts
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Classes in a Vector Space

Sportsp

Science

Arts
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kNN Is Close to Optimal
Cover and Hart 1967
Asymptotically the error rate of 1-nearest-neighborAsymptotically, the error rate of 1-nearest-neighbor 
classification is less than twice the Bayes rate [error rate of 
classifier knowing model that generated data]

In particular, asymptotic error rate is 0 if Bayes rate is 0.
Decision boundary:
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Where does kNN come from?
How to estimation p(X) ?

Nonparametric density estimation

Parzen density estimate

E.g. (Kernel density est.):

More generally:
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Where does kNN come from?
Nonparametric density estimation

Parzen density estimate

kNN density estimate

Bayes classifier based on kNN density estimator:ayes c ass e based o de s ty est ato

Voting kNN classifier

Pick K1 and K2 implicitly by picking K1+K2=K, V1=V2, N1=N2
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Asymptotic Analysis
Condition risk:  rk(X,XNN)

Test sample Xp
NN sample XNN

Denote the event X is class I as X↔I

Assuming k=1

When an infinite number of samples is available, XNN will be so close to X
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Asymptotic Analysis, cont.
Recall conditional Bayes risk:

Thus the asymptotic condition risk

This is called the MacLaurin series expansion

It can be shown that

This is remarkable, considering that the procedure does not use any information 
about the underlying distributions and only the class of the single nearest 
neighbor determines the outcome of the decision.
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In fact

Example:
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kNN is an instance of 
Instance-Based Learning

What makes an Instance-Based Learner?

A distance metric

How many nearby neighbors to look at?

A weighting function (optional)

How to relate to the local points?
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Distance Metric
Euclidean distance:

∑ xxxxD 22 )'()'( σ
Or equivalently,

Other metrics:
L1 norm: |x-x'|
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L∞ norm: max |x-x'|  (elementwise …)
Mahalanobis: where Σ is full, and symmetric 
Correlation
Angle
Hamming distance, Manhattan distance
…
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Case Study:
kNN for Web Classification

Dataset 
20 News Groups (20 classes)20 News Groups (20 classes)
Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)
61,118 words, 18,774 documents
Class labels descriptions
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Experimental Setup

Training/Test Sets: 
50% 50% randomly split50%-50% randomly split. 
10 runs
report average results

Evaluation Criteria:
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Results: Binary Classes
alt.atheism 

vs.
hi

Accuracy
comp.graphics

rec.autos 
vs. 

rec.sport.baseball

comp.windows.x 
vs. 

rec.motorcycles

k
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Results: Multiple Classes

Accuracy

Random select 5-out-of-20 classes, repeat 10 runs and average

Accuracy

All 20 classes

k
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Is kNN ideal? … more later
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Effect of Parameters
Sample size

The more the better
Need efficient search algorithm for NN 

Dimensionality 
Curse of dimensionality

Density
How smooth? 

Metric
The relative scalings in the distance metric affect region shapes.e e at e sca gs t e d sta ce et c a ect eg o s apes

Weight
Spurious or less relevant points need to be downweighted 

K
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Sample size and dimensionality

From page 316, Fukumaga33© Eric Xing @ CMU, 2006-2011

Neighborhood size

From page 350, Fukumaga34© Eric Xing @ CMU, 2006-2011
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kNN for image classification: 
basic set-up

Antelope
Trombone?

Jellyfish

German Shepherd

Kangaroo
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5‐NN

Voting …

3

Count

? Kangaroo

Antelope Jellyfish German Shepherd TromboneKangaroo

3

2

1

0
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10K classes, 4.5M Queries, 4.5M 
training
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KNN on 10K classes
10K classes
4 5M queries4.5M queries
4.5M training
Features

BOW
GIST

Deng, Berg, Li & Fei‐Fei, ECCV 2010
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Nearest Neighbor Search in High 
Dimensional Metric Space

Linear Search:
E.g. scanning 4.5M images!g g g

k-D trees:
axis parallel partitions of the data
Only effective in low-dimensional data

Large Scale Approximate Indexing
Locality Sensitive Hashing (LSH)
Spill-Tree
NV TNV-Tree
All above run on a single machine with all data in memory, and scale to millions of 
images

Web-scale Approximate Indexing
Parallel variant of Spill-tree, NV-tree on distributed systems, 
Scale to Billions of images in disks on multiple machines 
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Locality sensitive hashing
Approximate kNN

Good enough in practiceg p
Can get around curse of dimensionality

Locality sensitive hashing
Near feature points (likely) same hash values

Hash table
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Example: Random projection
h(x) = sgn (x · r),  r is a random unit vector
h(x) gives 1 bit Repeat and concatenateh(x) gives 1 bit. Repeat and concatenate. 
Prob[h(x) = h(y)] = 1 – θ(x,y) / π

r

y
θ x

y

x

y

h(x) = 0, h(y) = 0 h(x) = 0, h(y) = 1
x

h(x) = 0, h(y) = 1 hyperplane

Hash table
000 101

x y
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Example: Random projection
h(x) = sgn (x · r),  r is a random unit vector
h(x) gives 1 bit Repeat and concatenateh(x) gives 1 bit. Repeat and concatenate. 
Prob[h(x) = h(y)] = 1 – θ(x,y) / π

ry

θ

x

y

x

y

h(x) = 0, h(y) = 0 h(x) = 0, h(y) = 0
x θ

h(x) = 0, h(y) = 0 hyperplane

Hash table
000 101

x y

42© Eric Xing @ CMU, 2006-2011



22

Locality sensitive hashing
Retrieved NNs

Hash table

?
43© Eric Xing @ CMU, 2006-2011

Locality sensitive hashing

1000X speed-up with 50% recall of top 10-NN
1.2M images + 1000 dimensions
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Summary: Nearest-Neighbor 
Learning Algorithm

Learning is just storing the representations of the training 
examples in D

Testing instance x:
Compute similarity between x and all examples in D.
Assign x the category of the most similar example in D.

Does not explicitly compute a generalization or category 
prototype

ffEfficient indexing needed in high dimensional, large-scale 
problems

Also called:
Case-based learning
Memory-based learning
Lazy learning
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Summary (continued)
Bayes classifier is the best classifier which minimizes the 
probability of classification error.p y
Nonparametric and parametric classifier
A nonparametric classifier does not rely on any assumption 
concerning the structure of the underlying density function.
A classifier becomes the Bayes classifier if the density 
estimates converge to the true densities

when an infinite number of samples are usedp
The resulting error is the Bayes error, the smallest achievable error given the 
underlying distributions.

© Eric Xing @ CMU, 2006-2011
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Clustering

47© Eric Xing @ CMU, 2006-2011

Data Clustering

Two different criteria 
Compactness, e.g., k-means, mixture modelsp , g , ,
Connectivity, e.g., spectral clustering

Compactness Connectivity
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Graph-based Clustering
Data Grouping

i

Image sigmentation
Affinity matrix:

ijW
G = {V,E}

Wij j

)),(( jiij xxdfW =

][wWAffinity matrix:
Degree matrix:

][ , jiwW =
)(diag idD =
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Affinity Function

2

2

2

2
σ

ji XX
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=,

Affinities grow as  σ grows 

How the choice of σ value affects the results?

What would be the optimal choice for σ?
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Given a set of points S={s1,…sn}

A Spectral Clustering Algorithm 
Ng, Jordan, and Weiss 2003
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Form the affinity matrix

Define diagonal matrix Dii= Σκ aik

Form the matrix 

Stack the k largest eigenvectors of L to for the columns of the new 
matrix X: 
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Why it works?

K-means in the spectrum space !
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More formally … 
Spectral clustering is equivalent to minimizing a generalized 
normalized cut
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Wij
i

j

Toy examples

Images from Matthew Brand (TR-2002-42)
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Spectral Clustering
Algorithms that cluster points using eigenvectors of matrices 
derived from the data

Obtain data representation in the low-dimensional space that 
can be easily clustered

Variety of methods that use the eigenvectors differently (we 
have seen an example)

Empirically very successfulEmpirically very successful

Authors disagree:
Which eigenvectors to use
How to derive clusters from these eigenvectors
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Summary
Two nonparametric methods:

kNN classifier 
Spectrum clustering

A nonparametric method does not rely on any assumption 
concerning the structure of the underlying density function.

Good news:
Simple and powerful methods; Flexible and easy to apply to many problems.
kNN classifier asymptotically approaches the Bayes classifier, which is 
theoretically the best classifier that minimizes the probability of classification error.
Spectrum clustering optimizes the normalized cut

Bad news:
High memory requirements
Very dependant on the scale factor for a specific problem.
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