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Generative models of text

Generative models are a powerful tool for understanding document
collections.

Classfication/clustering (Naive Bayes)

Discover latent themes (LDA)

Distinguish latent and observed factors (e.g. Topic-aspect models)

Unifying idea: a probability model over text, P(w |z),
where z are labels or latent variables
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Classification

Naive Bayes is a generative model for classification:
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ẑ(d) = arg max
y

P(w (d)|z , β)

z (d)

w
(d)
n βk

KNd

D



The Dirichlet-Multinomial pair

Each βi is a distribution over words, typically a multinomial
distribution.

If we want to “be Bayesian,” we can place a prior distribution on β.
Then we are solving,

β̂ = arg max
β

∏
d

P(w (d)|z(d), β)P(β)

The conjugate prior for the multinomial is the Dirichlet distribution.

Conjugacy means we can do collapsed Gibbs sampling, analytically
marginalizing the parameter β. This trick gets used a lot.
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An aside

Using priors (or not) is a key tenet of some people’s world view!

But there are also practical reasons to use priors.

They perform smoothing, improving performance when data is limited
or the number of parameters is very large.
Priors also make it possible to incorporate domain knowledge.

Spoiler: I’ll have a lot more to say about whether the
Dirichlet-Multinomial pair is the best possible choice for generative
models.
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Example: Political ideology classification on Twitter

Training data:

Messages containing #p2 Messages containing #tcot

β#p2 emphasizes protest, unconstitutional, fascism

β#tcot emphasizes nobama, solyndra, socialism
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Naive Bayes for Ideology Prediction

Lin et al (2006) applied Naive Bayes to the “bitter lemons” corpus of text
about the Palestinian-Israeli conflict:



Unsupervised Naive Bayes

When the label z is not observed, it can be imputed.
This is a method for probabilistic clustering:
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P(w |θ, β) =
∑
z

P(z |θ)
∏
n

P(wn|βz)

where θ is a prior on z .

Typically we optimize using expectation-maximization:

In the e-step we compute the distribution Q(z)

In the m-step we update the parameter β
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Latent Variable Models

Imagine we have additional data y (d):
for each author on Twitter,

y (d) is their geographical location,
w (d) is the set of all words in all their
tweets,
z (d) is a latent variable which must
explain both y (d) and w (d).

We want to learn to predict y from w .
(Eisenstein, O’Connor, Smith, and Xing.

EMNLP 2010)
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P(y ,w |θ, β, µ, σ2) =
∑
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P(z |θ)P(y |µz , σ2z )
∏
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Latent Variable Models

training: Expectation-maximization,
alternating between updates to Q(z)
and the parameters {β, θ, µ, σ2}

prediction:
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Quantitative Results

error in km: mean median

mean location 1148 1018
text regression 948 712
mixture model 947 644



Qualitative Results

Each author in our dataset is a point;
cluster membership is indicated by color and shape.1

1Figure by Brendan O’Connor



Qualitative results

For each cluster, we rank words by log-odds: logβi − log 1
K

∑
j βj :

New York: brib, lml, wassupp, uu, werd, deadass, flatbush, odee, dha

So. Cal: disneyland, cuh, fucken, af, fasho, faded, wyd, freeway, bomb

No. Cal: sac, oakland, sf, hella, warriors, pleasure, bay, koo

Atlanta: atlanta, atl, georgia, ga, $1, waffle, af, nun, shawty

Cleveland/Detroit: ctfu, detroit, foolin, .!!, cleveland, geeked, salty, ikr

Pac. Northwest: seattle, portland, oregon, olympic, heh, canada, stoked



Discovering latent themes

Topic models like latent Dirichlet allocation discover latent themes or
topics in document collections:

θ α

zn

wn βk
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Each βk is a topic, a distribution over words.

Each θd represents the topic proportions for
document d .

Each zn is the latent topic which generates the
word wn.

P(w |θ, β) =
∏
n

P(zn|θ)P(wn|βzn)



Topics in Twitter

Key point is that individual authors are admixtures of these topics,
e.g., my Twitter feed is 60% chit-chat, 30% basketball, 10% emoticons.



Combining topics and labels

Recall the Twitter political ideology problem:

Messages containing #p2 Messages containing #tcot



Adding topics

Authors don’t just express ideological viewpoints, they discuss topics:
health care, taxes, regulation, ...

In prediction, these topical differences make learning harder.
Left-wing and right-wing perspectives on a single topic may share
more words than a single perspective on multiple topics.

In analysis, we often want to understand topic-specific differences:
e.g., how do the left-wing and right-wing perspectives differ with
respect to foreign policy
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Switching models

We can combine topics and labels by adding a “switch” for each word,
which determines if the word is generated from a topic or the label:
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associated with a label.

Each β
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k,j is a word distribution

associated with a topic-label
interaction.
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Switching models: a schematic

A topic-perspective-background model:

background

switch

topic

gate

word distribution

perspective



Example output: topics and cultures

From ccLDA (Paul and Girju, 2009)



Example output: topics and perspectives

From TAM (Paul and Girju, 2010);
added unsupervised and semi-supervised learning to ccLDA.



Results: ideology prediction

From Multiview-LDA (Ahmed and Xing, 2010)



Results: geography prediction

error in km: mean median

mean location 1148 1018
text regression 948 712
mixture model 947 644
mixture model + topics 900 494



Overview

Capabilities of generative models:

Classification and clustering (Naive Bayes)

Discovering latent topics (LDA)

Combining topics and labels (ccLDA, TAM, Multiview-LDA)

We have focused on text, but there are many, many applications of these
models to vision and computational biology.
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Taking stock

Generative models models have many advantages:

Interpretability

Can combine multiple modalities

Relatively simple semi-supervised extensions

Easy to incorporate domain-specific insights in model design

But they also have problems! (Eisenstein et al., ICML 2011)
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Redundancy

A näıve Bayes classifier must estimate the parameter
Pr(w = “the”|y) for every class y .

The probability Pr(w = “the”) is a fact about English,
not about any of the classes (usually).

Heuristic solutions like stopword pruning are hard to generalize to new
domains.

It would be better to focus computation on parameters that
distinguish the classes.
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Overparametrization

An LDA model with K topics and V words requires K × V
parameters.

An LDA paper shows 10 words per topic.

What about the other V − 10 words per topic??

These parameters affect the assignment of documents...
But they may be unnoticed by the user.
And there may not be enough data to estimate them accurately.
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Inference complexity

Latent topics may be
combined with additional
facets, such as sentiment
and author perspective.

“Switching” variables decide
if a word is drawn from a
topic or from another facet.

Twice as many latent
variables per document!
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c w β
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Sparse Additive Generative Models

Multinomial generative models: each class or latent theme is
represented by a distribution over tokens, P(w |y) = βy

Sparse Additive Generative models (SAGE):
each class or latent theme is represented by its deviation from a
background distribution.

P(w |y ,m) ∝ exp
(
m + ηy

)
m captures the background word log-probabilities
η contains sparse deviations for each topic or class
additional facets can be added in log-space
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Sparse Additive Generative Models

A topic-perspective-background model using Dirichlet-multinomials:
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switch
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word distribution
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Sparsity deviation of log probabilities

Sparsity: ηi = 0 for many i

Due to normalization, the generative probabilities will not be
identical, Pr(w = i |η + m) 6= Pr(w = i |m), even if ηi = 0.

But for most pairs of words, Pr(w=i |η+m)
Pr(w=j |η+m) = Pr(w=i |m)

Pr(w=j |m)

Different notion of sparsity from sparseTM (Wang & Blei, 2009),
which sets Pr(w = i |y) = 0 for many i .
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Sparsity through integration

The L1 regularizer is equivalent to a Laplace prior distribution:
η ∼ L(0, σ)

The Laplace distribution is equal to the integral:
L(η; 0, σ) =

∫
N (η; 0, τ)Exp(τ ;σ)dτ (Lange & Simsheimer, 1993)

Other integrals also induce sparsity, e.g.∫
N (η; 0, τ) 1

τ dτ (Figueiredo, 2001; Guan & Dy, 2009)

We solve this integral through coordinate ascent (EM), updating:

The distribution Q(τ )
A point estimate of η
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Applications

Document classification

Topic models

Multifaceted topic models



SAGE in document classification

yd ηk,i τk,i

wd,n mi

i ∈ {1, . . . ,W }

Each document d has a label yd

Each token wd ,n is drawn from a multinomial distribution β, where

βi =
exp(ηyd ,i+mi)∑
j exp(ηyd ,j+mj)

Each parameter ηk,i is drawn from a distribution equal to N (0, τk,i ),
with P(τk,i ) ∼ 1/τk,i



Inference

We maximize the variational bound

` =
∑
d

Nd∑
n

logP(w
(d)
n |m,ηyd ) +

∑
k

〈logP(ηk |0, τ k)〉

+
∑
k

〈logP(τ k |γ)〉 −
∑
k

〈logQ(τ k)〉 ,

The gradient wrt η is,

∂`

∂ηk

= ck − Ckβk − diag
(〈
τ−1k

〉)
ηk ,

where

ck are the observed counts for class k
Ck =

∑
i cki

βk ∝ exp(ηk + m)



Inference

We maximize the variational bound

` =
∑
d

Nd∑
n

logP(w
(d)
n |m,ηyd ) +

∑
k

〈logP(ηk |0, τ k)〉

+
∑
k

〈logP(τ k |γ)〉 −
∑
k

〈logQ(τ k)〉 ,

The gradient wrt η is,

∂`

∂ηk

= ck − Ckβk − diag
(〈
τ−1k
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ηk ,

where

ck are the observed counts for class k
Ck =

∑
i cki

βk ∝ exp(ηk + m)
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Document classification evaluation

20 newsgroups data: 11K training docs, 50K vocab
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SAGE in latent variable models

θd α

zd ηk,i τk,i

wd,n mi

i ∈ {1, . . . ,W }

The gradient for η now includes expected counts:

∂`

∂ηk

= 〈ck〉 − 〈Ck〉βk − diag
(〈
τ−1k

〉)
ηk ,

where 〈cki 〉 =
∑

n Qzn(k)δ(wn = i).
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Sparse topic model results

NIPS dataset: 1986 training docs, 10K vocabulary
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Sparse topic model analysis

Total variation =
∑

i |βk,i − βi |
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Standard topic models assign the greatest amount of variation for the
probabilities of the words with the least evidence!



Multifaceted generative models

Combines latent topics β(T )

with other facets β(A), e.g.
ideology, dialect, sentiment

Typically, a switching
variable determines which
generative facet produces
each token (Paul & Girju,
2010; Ahmed & Xing, 2010).

There is one switching
variable per token,
complicating inference.
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Multifaceted generative models in SAGE

In SAGE, switching variables
are not needed

Instead, we just sum all the
facets in log-space:

P(w |z , y) ∝

exp
(
η
(T )
z + η

(A)
y + m

)
The gradient for η(T ) is now

∂`

∂η
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Evaluation: Ideology prediction

Task: predict blog ideology

Model: latent topics, observed ideology labels

Data: six blogs total (two held out), 21K documents, 5.1M tokens
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Results match previous best of 69% for Multiview LDA and support vector
machine (Ahmed & Xing, 2010).
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Evaluation: Geographical Topic Model

Task: location prediction from Twitter text

Model: latent “region” generates text and locations

9800 weeklong twitter transcripts; 380K messages; 4.9M tokens

error in km: mean median

mean location 1148 1018
text regression 948 712
mixture model 947 644
mixture model + topics 900 494
SAGE (5K vocab) 845 501
SAGE (22K vocab) 791 461
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Summary of SAGE

The Dirichlet-multinomial pair is computationally convenient,
but does not adequately control model complexity.

The Sparse Additive GEnerative model (SAGE):

gracefully handles extraneous parameters,
adaptively controls sparsity without a regularization constant,
facilitates inference in multifaceted models.
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Conclusion

Generative models provide powerful tools for understanding natural
language data.

Capabilities include prediction, clustering, and discovering latent
topics, as well as more exotic models that combine latent and
observed aspects.

As always, controlling model complexity is critical.

SAGE improves on the Dirichlet-Multinomial pair by modeling sparse
deviations in log-odds.

Thanks!



Conclusion

Generative models provide powerful tools for understanding natural
language data.

Capabilities include prediction, clustering, and discovering latent
topics, as well as more exotic models that combine latent and
observed aspects.

As always, controlling model complexity is critical.

SAGE improves on the Dirichlet-Multinomial pair by modeling sparse
deviations in log-odds.

Thanks!



Example Topics

20 Newsgroups, Vocab=20000, K=25

LDA (perplexity = 1131)

health insurance smokeless tobacco smoked infections care meat

wolverine punisher hulk mutants spiderman dy timucin bagged marvel

gaza gazans glocks glock israeli revolver safeties kratz israel

homosexuality gay homosexual homosexuals promiscuous optilink male

god turkish armenian armenians gun atheists armenia genocide firearms

SAGE (Perplexity = 1090)

ftp pub anonymous faq directory uk cypherpunks dcr loren

disease msg patients candida dyer yeast vitamin infection syndrome

car cars bike bikes miles tires odometer mavenry altcit

jews israeli arab arabs israel objective morality baerga amehdi hossien

god jesus christians bible faith atheism christ atheists christianity
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