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Datasets in Genetics

* Analysis of high-dimensional genomic datasets
— Human genome
* 3.2 billion nucleotides in the whole genome

SR

* >3 million genetic polymorphisms

* >25,000 genes, whose expression-levels can be measured with
microarray technology
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Sparsity and Genetics

* Why sparsity in analysis of genomic datasets?
Biological systems are highly modular
Genes are organized into functional modules or pathways

Although genome data are very high-dimensional, each meaningful
piece of information often involves much fewer entities

Sample size is significantly smaller than the number of dimensions

* The key research question
— How is the information encoded in the genome expressed into
observed phenotypes?
— Which genes are responsible for each phenotypes?

* E.g., height, obesity, disease susceptibility (cancer, diabetes, etc.),
gene expression levels

Genome Polymorphisms
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Genetic Basis of Diseases
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Sparsity: lasso for analysis of genome-phenome data

Overview

— Linear regression with L, penalty

From sparsity to structured sparsity: extending the lasso

approach
— Fused lasso and group lasso for simple structures

— Fused lasso and group lasso as building blocks for more complex

structures

Although we assume a linear regression model, the approach

can be applied to other types of models
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Multivariate Regression Model

Trait Genotype Association Strength
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Regression Estimation
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Many non-zero associations:
Which SNPs are truly significant?
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Lasso for Selecting Relevant Inputs
(Tibshirani, 1996)
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What if there are multiple related traits?

L1 Regularization (Lasso)

* Enforcing sparsity

B = argming 'Y — XBI1* + A8l

Constraint
region of L,
penalty Contour of

the squared-
error loss
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Sparsity

* Makes statistical sense: Learning is now feasible in
high dimensions with small sample size

* Makes biological sense: each phenotype is likely to
be influenced by a small number of SNPs, rather than
all the SNPs.
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What is Structured Sparsity?

Trait Genotype Association Strength

Association strength
between
SNP j and Trait £: /3,

(3.4,15,2.1,09,1.8) =
C—)

Lung
physiology

J III Al
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What is Structured Sparsity?

Leveraging prior knowledge
— Structure on the inputs
* Inputs are ordered in time, and adjacent inputs are jointly relevant

* Inputs are grouped, and inputs in the same group are jointly
relevant

— Structure on the outputs

* Outputs are ordered in time, and adjacent outputs have the same
relevant inputs

* Qutputs are grouped, and outputs in the same group are jointly
relevant
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Why Structured Sparsity?

Advantages of learning structured sparsity
— Improve the power for detecting true relevant inputs by
* Leveraging prior information
* Combining statistical strength across multiple inputs and outputs
— Reduce false positives in the estimated set of relevant inputs

— Sparsity pattern in the parameters with structure can lead to more
meaningful and interpretable results
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Example of Structured Sparsity TCGACGTTTTACTGTACAATT
with Graph-Structured Outputs: VA A

SNPs and Asthma Clinical Traits

AllergySummer’

_ AllergySpring

Subnetworks for lung

physiology Subnetwork for
quality of life
E2 i
Lymphocytes
15
Example of Structured Sparsity Inputs (Cenotypes)
with Tree-Structured Output: TCG//'\CG}TT/TACT/GTACAATT
SNPs and Gene-Expression Traits
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Learning Structured Sparsity

Trait Genotype Association Strength
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How to combine information across

multiple traits to increase the powes?

Structured Sparsity

Structured sparsity for simple structures
— Fused lasso

— Group lasso

We will use fused lasso and group lasso as a building block to
construct other penalty functions for incorporating more
complex structures

18
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Fused Lasso

Fused lasso (Tibshirani et al., 2004)
— Assumes a chain structure over inputs (ordered in time)
— Goal: select adjacent inputs as relevant jointly — structured sparsity!

minimize L(A1,\2,08)=y— Xﬁl +)\2|5| +)\IZ 18j — Bj-1
=

— Penalizes the difference between ,Bj and ,b’j_,
— Encourages,[)’j and ,[)’j_I to take similar values
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Fused Lasso
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Group Lasso

Group lasso (Yuan and Lin, 2006)
— Assumes the groups over inputs are known
— Goal: select groups of inputs (rather than individual inputs) as relevant to

the output — structured sparsity!

L)’j

|L1/L2

J
minimize  L(A1, A2, B)=|y — Xﬁ|2 +A
j=1

Il ﬁ_/ ”LI/L2=,\ Eﬁjkz

k
L1/L2 penalty
* L1 component (lasso penalty) performs sparse selection

* L2 component (ridge penalty) enforces the ﬂjk’s in the same group to
be selected jointly as non-zero
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Extending Group Lasso

/L, penalty for group lasso can be used in various different

ways

— L,/L,regularized multli-task regression

Regression
(" Coefficients by lasso

Inputs

Outputs

argmin Z(yk —XB) - (ye — XPBr) E>
k

- <:] argmin Z(yk - XBe) - (yk — XBk)
P k

Regression Coefficients
By L1/L2 multi-task
regression
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Hierarchical Selection with Nested Groups
(Zhao, Rocha, and Yu, 2009)

‘g 0 0
@ © oo D@ ®

Prior knowledge on group
hierarchies

Sod b od >

Almost-complete tree

,

One-sided tree

@

Regular tree
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Structured Sparsity

* Structured sparsity for simple structures
— Fused lasso

— Group lasso

* We will use fused lasso and group lasso as a building block to
construct other penalty functions for incorporating more
complex structure

—) Graph-guided fused lasso
— Temporally smoothed lasso
— Tree-guided group lasso

25

Example of Structured Sparsity TCGACGTTTTACTGTACAATT
with Graph-Structured Outputs: VA A
SNPs and Asthma Clinical Traits

Subnetworks for lung

physiology Subnetwork for

quality of life

NeutrophilsDiff

How can we find a sparse set of
inputs influencing modules of
related traits?

.@ED ..Avgcigar

Eosinophils osinophilsDif

26

11/13/11

13



Graph-Guided Fused Lasso

Trait Genotype Association Strength
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We introduce

graph-guided fusion penalty
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Graph-Constrained Fused Lasso

Step 1: Thresholded correlation graph Step 2: Graph-constrained fused lasso

of phenotypes
ACGTTTTACTGTACAATT

Fusion

BSC = argmin Z(y;‘. - XB)" - (yi — X8,

I/\ZZAWM\ + 7y Z Z

(mlel J

Lasso Graph-constrained fusion

Penalty penalty

F“jjm - Sign(rml)*‘ Jll
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Fusion Penalty

SNPj
ACGTTTTACTGTACAATT

Association strength between Association strength between

SNP j and Trait k: f3;, A~ | SNP j and Trait m: f3;,,

Trait m
Trait k

+ Fusion Penalty: | g, -/,,|

» For two correlated traits (connected in the network), the
association strengths may have similar values.
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Graph-Constrained Fused Lasso

Overall effect

ACGTTTTACTGTACAATT

» Fusion effect propagates to the entire network
» Association between SNPs and subnetworks of traits

30
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Graph-Weighted Fused Lasso

Overall effect

ACGTTTTACTGTACAATT

wa
¥ N,

Subnetwork structure is embedded as a densely connected
nodes with large edge weights

Edges with small weights are effectively ignored
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Estimating Parameters

Quadratic programming formulation
— Graph-constrained fused lasso

B = argmin ) (v — XB)" - (vr — XBy)
%
s. t. ZZ |Bjk| < s1 and Z Z |Bjm — sign(rmi)Bj1| < s2
(] (m)eE j

— Graph-weighted fused lasso
BY = argmin Y (yi — XB8,)" - (yr — XB,)

s
s. t. Z Z\ 3jk| < s1 and Z f(r,,,[)z |Bjm — sign(rmi)Bji| < s2
ko J

(m)eE

Many publicly available software packages for solving convex
optimization problems can be used

Slow! - we will discuss more efficient proximal gradient method later.
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Asthma Trait Network
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Lung physiology-related traits |
* Baseline FEV1 predicted value: MPVLung
Phenotypes — « Pre FEF 25-75 predicted value
2 « Average nitric oxide value: online
E * Body Mass Index
g * Postbronchodilation FEV1, liters: Spirometry
= | * Baseline FEV1 % predicted: Spirometry
‘l’ * Baseline predrug FEV1, % predicted
-— « Baseline predrug FEV1, % predicted
Q551R SNP
* Codes for amino-acid changes in the
intracellular signaling portion of the receptor
. * Exon 11
Trait Network
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Structured Sparsity

* Structured sparsity for simple structures
— Fused lasso

— Group lasso

* We will use fused lasso and group lasso as a building block to
construct other penalty functions for incorporating more
complex structure

— Graph-guided fused lasso
=) Temporally smoothed lasso
— Tree-guided group lasso
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Time-Series Measurements of Traits

* Dynamic trait with a temporal trend
— Growth of tumor over time
— Height, weight over time
— Gene expressions over time in cell cycle or embryonic development

* Are there underlying genetic variants (SNPs) that influence
the overall trend over time?

36

18



Time-Series Measurements of Traits

Stationary Trait

Stationary Trait
-
Association
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Genetic effects active over time
with possibly varying effect size
over time
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Temporally-Smoothed Lasso

* Step 1: Autoregressive Model

— Captures the shape of the temporal trend in the dynamic-trait data

— Estimates the model parameters based on the dynamic-trait data only

* Step 2: Temporally-Smoothed Lasso

— Penalized regression framework

— Incorporates the estimated dynamic-trait shape parameters from Step

1

— Detects time-varying genetic effects on the dynamic trait

38
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Step 1: Autoregressive Model

Autoregressive Model :
Vit+1 = QptYht + “211 +€
Estimating Model Parameters:
Qg = argmin (Ye+1 — O iVt — o,?..t)T (Vett1 — QktYrt — agvt)
Estimates of the Model Parameters:

T
Yiet " Ykit+1

At = T
yk.t Ykt

39
Step 2: Temporally-Smoothed Lasso

Autoregressive

parameters from
A . T_l . .
B(l)-:) = r{rgllllillz Z(yk<t — Xﬂk.t)T . (yki — Xﬁk‘t) + A ZZZ i{-.t +7- Z ZZ wi,tﬂ — dk~t"j)l]c,t|

k t kot g j kot=1
Lasso Penalty Temporally-smoothed
Lasso Penalty
40
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Simulation Study

12345678910
Time

Trait data for
all individuals

1

23456728910
Time

Trait data for
individuals with
no association SNPs

0
12345678910
Time

True association
strength

0
123456782910
Time

Estimated

association strength
(single SNP analysis)

— Linear Dynamic

Trait values

1

50
12345678910
Time

Estimated
association strength
(lasso)

23456780910
Time

Trait data for

individuals with

1-2 association SNPs

10
o0
&3

40
50

3456780910
Time

Trait data for

individuals with

>3 association SNPs

12345678910
Time

Estimated
association strength
(temporally-smoothed

lasso)
41

Simulation Study — Cyclic Dynamic
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Structured Sparsity

* Structured sparsity for simple structures
— Fused lasso

— Group lasso

* We will use fused lasso and group lasso as a building block to
construct other penalty functions for incorporating more
complex structure

— Graph-guided fused lasso
— Temporally smoothed lasso
=) Tree-guided group lasso

43

Inputs (Genotypes)

Example of Structured Sparsity
with Tree-Structured Output: TCG/"\CG}TT}ACT/GTACAATT

SNPs and Gene-Expression Traits

Regrlessiof.c L{Fﬁcie S

’—|—T§ 7/ // Vi

How can we find a sparse set of
inputs influencing modules of
related traits?

L
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Tree-Guided Group Lasso

* In a simple case of two outputs

* Low height . * Large height
* Tight correlation P * Weak correlation

? * Joint selection :- * Separate selection

Inputs
Inputs

45

Tree-Guided Group Lasso

* In a simple case of two outputs

Select the child
h .
nodes jointly or

separately?

P Tree-guided group lasso ~
i ! . ’
argmin Y (v — XB) - (v — XBr)
k
27 [p(Bjl + 18l) + (1 = ) (/82 + B3)]
2 j
Q. H
= : L, penalty L, penalty
L * Lasso penalty * Group lasso
— * Separate selection * Joint selection
P Elastic net
\ 4
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* For a general tree

argmin Z(yk —XBk)" - (y& — XPBr)

Note that the [(1 = h1) (y/B51 + B72) + ha(|Bsal + |ﬁj2|)]

groups overlap! Joint Separate
\ - selection selection &

Tree-Guided Group Lasso

Cy = {5;‘1753'2,@‘3}]

Select the child
nodes jointly or
separately?

Tree-guided group lasso ~N

k
+/\Z[(1—h2 L+ B35+ B +h \,813|

<€— Inputs (SNPs)

lllustration with Simulated Data

High
association

No
association
utputs enes,
--__--- S

True regression Tree-guided

coefficients group lasso
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Analysis of Yeast Data

Hierarchical
clustering tree for
genes (outputs)

Outputs (Genes) é

‘| High
|“\h | association
|

No
association

<€— Inputs (SNPs)

Tree-guided

Lasso
group lasso
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Towards More Complex Structured
Sparsity Pattern

Different types of penalties can be combined in a single
objective function to achieve a more complex structured-

sparsity pattern

The regularization parameter for each penalty needs to be
determined via cross-validation

50
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Combining Penalties for Structured
Sparsity

How can we detect SNPs (inputs) influencing trait modules?
— Graph-guided fused lasso + temporally-smoothed lasso

ACGTTTTACTGTACAATT

it TN

.
.
e,
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Improving Scalability

» Challenges in optimization

— Non-smooth penalty
— Non-separable penalty: each term in summation of the penalty function

needs to contain non-overlapping set of parameters

Convex program approach is too slow for genome-scale datasets

* Proximal-gradient method (xi et al., submitted)
Handles non-separability by reformulation of the problem through dual norm
Handles non-smoothness by introducing smooth approximation of the non-
smooth function

We can apply accelerated gradient method

General approach applicable that can be used for fused lasso, graph-guided
fused lasso, tree-guided group lasso, temporally smoothed lasso, and many

other penalized regression

52
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Summary

Key advantages of enforcing structured sparsity
— Increase power for recovering true relevant features
— Reduce false positives

— Combine information across multiple inputs and outputs to produce more
meaningful and interpretable results

Methods for learning structured sparsity pattern in regression
para meters
— Assume the structure in inputs or outputs is known as prior knowledge
— Otherwise, learn the structure from data in pre-processing step
— Construct penalty functions that encode the structure information
* Graph-guided fused lasso: graph structure over outputs
* Temporally-smoothed lasso: chain structure for time-series outputs
* Tree-guided group lasso: tree structure over outputs

— Can be used in applications in genetics, computer vision, language
modeling, etc.
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