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e Why we may have such boundaries?
e Irregular distribution
e Imbalanced training sizes
e outliners

© Eric Xing @ CMU, 2006-2011 2




(X X
[ XXX
[ XXX
0o
. . . P
Classification and Margin :
. . |
e Parameterzing decision boundary
e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:
wx+b=0
W
o o
@)
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O o Class 2
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Classification and Margin

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar

"offset" term, then we can write the decision boundary as:
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Or more compactly:

o
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for all x; in class 2
for all x;in class 1

(WTx;b)y; /][] >c/ljwi]

The margin between two points
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Maximum Margin Classification o
e The margin is:
wT( ) 2c
m=—\x.—-x.)=—
1 D 1T
e Here is our Maximum Margin Classification problem:
max 2
' [
st y,(wWx +b)l|w|=clw], Vi
. . g . [ X X ]
Maximum Margin Classification, sels
con'd. o2

e The optimization problem:
c
max, , M

y.(W'x, +b) /||w|| > c/||w||, Vi
e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)
e So we instead work on this cleaner problem:

max L
w,b
o]

y.(W'x, +b) 21, Vi
e The solution to this leads to the famous -
-- believed by many to be the best "off-the-shelf" supervised learning
algorithm
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Support vector machine e
e A convex quadratic programming problem H1 '.
N
. . . ©
with linear constrains: L % &
1 \2\ ./ “\_
maXW’b T B d \\ w
[ RN
. o ! \\{-l—}r: +1
y,(W'x, +b) =1, Vi ® . ‘m\ Yexanh
1 e =
e The attained margin is now given by M N e
e Only a few of the classification constraints are relevant = support vectors
e Constrained optimization
e We can directly solve this using commercial quadratic programming (QP) code
e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.
=> deeper insight: support vectors, kernels ...
=> more efficient algorithm
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Digression to Lagrangian Duality |2

e The Primal Problem
min,  f(w)
s.t. g(w) <0, i=1,...k
h(w)=0, i=1,...,/

The generalized Lagrangian:

L(w,a,f)=f(wW)+Y a,g(w)+) Bh(w)
i=1 i=1

the o's («,20) and f's are called the Lagarangian multipliers

Primal:

Lemma:

f(w) if wsatisfies primal constraints
Max, 5,0 L0, ) ={ .

o/w

A re-written Primal:
min, max, ;.o £(w a, )
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Lagrangian Duality, cont.

e Recall the Primal Problem:

min, max, ;.o £(w,a, f)

e The Dual Problem:
maX, 5.0 min £ (w,a, f)

e Theorem (weak duality):

d =max, ,,.omin, L(wa,p) < min max,,, ., L(w.a f)=p

e Theorem (strong duality):
Iff there exist a saddle point of .£2(w,a, f), we have
d* — p*
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The KKT conditions

e |[f there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

i,é’(w,a,,B)zo, i=1...k
ow,

1

O ptwa,f)=0, i=1..I

p;
a,g,(w)=0, i=1...m
gwW)<0, i=1l....m
a, 20, i=1....m

e Theorem: If w*, &* and S* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier |2
|
e Recall our opt problem:
max,, , 1
o
y.(W'x, +b) 21, Vi
e This is equivalent to
. 1,
min,, —w'w
' 1-y.(wW'x, +b) <0, Vi
e Write the Lagrangian:
L(w,b,a)= ;WTW— Zai [yi (W' x, +b) —1]
i=1
o Recall that (*) can be reformulated as min,,, max, .o, £(w,b,a)
Now we solve its dual problem: max, .o min, , £(w,b, )
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L(w,b,a) =—WTW—Z;ai[yi(wai +b)—1] 8022
i= [ X J
The Dual Problem :

max, .o min,,, £(w,b,a)

e We minimize .£ with respect to w and b first:

Vwﬁ(w,b,a)=w—2aiyixi=0, (*)
i1
V,L(wba)=>Y ay =0, (*%)
i1
Note that (*) implies: w= iaiyixi (***)
i1

e Plug (***) back to .£ , and using (**), we have:

m 1 m
L(wb,a)= Zai > Zaia‘,y,,yj (x/X;,)
i1

ij=1
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The Dual problem, cont. &
e Now we have the following dual opt problem:
m 1 m
max,, ](a) = Zlai _E Eaiajyiyj(xzxj)
= i,j=
st. 20, i=1...k
Zaiyi =0.
i=1
e Thisis, (again,) a quadratic programming problem.
e A global maximum of ¢, can always be found.
e But what's the big deal??
e Note two things: m
1. wcanberecoveredby w= Zaiyixi See next ...
i=1
2. The "kernel" X,~TXj More later ...
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|. Support vectors :

¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!

ag.(w)=0, i=1....m

Class 2 Call the training data points
0.=0 - whose g's are nonzero the
6373' Cyi;}} support vectors (SV)
=0 _
pis=0 g &==0
g a,=0.8
o,=0 o
o - ag=1.4 WTK+I)= 1
ay=0 _ T .
Class 1 o3=0 _ wix+b=0
wix+b=-1
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Support vector machines

e Once we have the Lagrange multipliers {¢;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w= Za[yixi

ieSV

e For testing with a new data z

e Compute r .
wz+b= Zaiyl.(xi z)+b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly
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Interpretation of support vector
machines '

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {¢;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples Xiij

e We make decisions by comparing each new example Z with
only the support vectors:

y*= sign( > ay, (XiTz)+ b]

ieSV
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lI. The Kernel Trick '
e Is this data linearly-separable?
*— - — 20—0—0—0—0
0 x
e How about a quadratic mapping ¢(x;)?
[ X X ]
[ X X X
s
ll. The Kernel Trick -

e Recall the SVM optimization problem
max,, j(a)zzai_;Zaiajyiyj(xiTXj)
i=1 ij=1

st. 0<¢g,<C, i=1....m

iaiyi =0.
i=1
e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x,)=¢(x,)" #(x,)
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II. The Kernel Trick

e Computation depends on feature space
e Bad if its dimension is much larger than input space

m 1 m
max,, Zai 5 Zaia/.y,.yjK(X,. 'X./)
i=1

ij=1

st. 20, i=1....k

Where K(x,x) = $06) 6(x)  y*(z) = sign( S ayK(x,,z)+ bj

ieSV

[ X X ]

esce

. [ L
Transforming the Data -

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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An Example for feature mapping
and kernels

e Consider an input x=[x,,x,]
e Suppose #.) is given as follows

¢([x1 ] =1,32x,,72x,, 32, x% \2x,x,

e Aninner product in the feature space is

M)

e So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,X') =(1+xTx‘)2
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More examples of kernel
functions

e Linear kernel (we've seen it)
K(x,x)=x"x'
e Polynomial kernel (we just saw an example)
K(x,x')= (1+xTx‘)”

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

e Radial basis kernel
K(x,x") = exp(— ;”x — x'||2)

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The essence of kernel :
e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(z,2)= (T2 +¢)*
e How many dimensions we've got in the new space?
e How many operations it takes to compute K()?
e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)
. -2
I\—( I' "") — (_\YI) (_ u)
T ’ 202
e s this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢(x) is?
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Kernel matrix :

e Suppose for now that X is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., X, we can
compute an mxm matrix & = {K; ;}, where K; ; = o(x:)" o(x;)

e This is called a kernel matrix!
e Now, if a kernel function is indeed a valid kernel, and its

elements are dot-product in the transformed feature space, it
must satisfy:

e Symmetry K=KT
proof K;; = O{J';)TO(.!'_;) = (‘J(‘!‘_’;)T('J(‘!‘,-] = K
o Positive —semidefinite Yy Ky>0 Vy
proof?

e Mercer's theorem
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SVM examples &
15 1 05 ; 5 1 15 2 1
linear 27 order polynomial
= [ [ 05 1 15 A==z 0 05 1 15
4" order polynomial 8 order polynomial
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Examples for Non Linear SVMs — | 332:
Gaussian Kernel -

Linear

Gaussian
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Example Kernel 5
I
e X;is a bag of words
e Define ¢(x;) as a count of every n-gram up to n=k in x;.
e This is huge space 26
e What are we measuring by ¢(x,)' &(x;)?
e Can we compute the same quantity on input space?
e Efficient linear dynamic program!
e Kernel is a measure of similarity
e Must be positive semi-definite
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Non-linearly Separable Problems |2

é’.
%

=

Class 1

Class 2

(@)

/Xi O
o gl wix+b=1

wix+b=0

wix+b=—-1

e We allow “error” ; in classification; it is based on the output of

the discriminant function w’x+5

e & approximates the number of misclassified samples
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Soft Margin Hyperplane 5
e Now we have a slightly different opt problem:
- 1 T 7
min,, —ww+CY &
"2 i1
ot y.(wWx, +b)21-¢&, Vi
©£20, Vi
e & are “slack variables” in optimization
e Note that =0 if there is no error for x;
e & is an upper bound of the number of errors
e C: tradeoff parameter between error and margin
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e Remember Ridge regression

e Min [squared loss + A wiw]

e How about SVM?

m

gLy, 1y who 4+ A Z max(1 — y;(w'z; +b),0)
1

regularization Loss: hinge loss
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The Optimization Problem

|
e The dual of this new constrained optimization problem is

m 1 m
max, J(a)= Zai ) Zaia/y,.y_, (XiTX./)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i )y, = 0.
i=1

e This is very similar to the optimization problem in the linear

separable case, except that there is an upper bound C on g
now

e Once again, a QP solver can be used to find o
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The SMO algorithm

e Consider solving the unconstrained opt problem:

max Wi(ay, ag,...,a.n)
(e
e We've already seen several opt algorithms!
e ?

o ?
o ?

e Coordinate ascend:
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Coordinate ascend -

[ X X ]

0000
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Sequential minimal optimization 4

e Constrained optimization:

m 1 m
max,, j(a):zai_g Zaiajyiyj(XfTXj)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i ay, = 0.
i=1

e Question: can we do coordinate along one direction at a time

(i.e., hold all ¢, fixed, and update «.?)
[ 1
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The SMO algorithm

Repeat till convergence

1. Select some pair ¢; and ¢; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(a) with respect to o, and «;, while holding all the other
o 's (k #1; j) fixed.

Will this procedure converge?

o000

0000

coee
Convergence of SMO °e

m 1 m
max,, j(a)zzai_Ezaiajyiyj(xfTXj)
i=1

ij=1

st. 0<e, <C, i=1..k

i .y, = 0.
i=1

KKT:

e Letshold ¢;,..., ¢, fixed and reopt J w.r.t. ¢, and «,
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Convergence of SMO :
e The constraints: .

a1y +agys = §

0<a; <C %H """""""""""""""""" oy ey =

0<a, <C

e The objective: L L
Jlar, ag,. .., ) = T (€ — a2y2)y1. 2, . . ., )

e Constrained opt:

© Eric Xing @ CMU, 2006-2011 37
[ X X ]
[ X X X
[ X L1
At s
Cross-validation error of SVM .

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

Leave-one-out CV error = #sup_p(_)rt vectors
# of training examples
1 e
N ® ®
@
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Summary

e Max-margin decision boundary

e Constrained convex optimization

Duality

e The KTT conditions and the support vectors

e Non-separable case and slack variables

The SMO algorithm
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