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What is a good Decision 
Boundary?

Consider a binary classification 
task with y = ±1 labels (not 0/1 as y (
before). 
When the training examples are 
linearly separable, we can set the 
parameters of a linear classifier 
so that all the training examples 
are classified correctly

Class 2

Many decision boundaries!
Generative classifiers
Logistic regressions …

Are all decision boundaries 
equally good?

Class 1
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What is a good Decision 
Boundary?
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Not All Decision Boundaries Are 
Equal!

Why we may have such boundaries?
Irregular distribution
Imbalanced training sizes
outliners
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Classification and Margin
Parameterzing decision boundary

Let w denote a vector orthogonal to the decision boundary, and b denote a scalar g y
"offset" term, then we can write the decision boundary as:

0=+ bxwT

Class 1

Class 2

d - d+
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Classification and Margin
Parameterzing decision boundary

Let w denote a vector orthogonal to the decision boundary, and b denote a scalar g y
"offset" term, then we can write the decision boundary as:

0=+
TT

T

w
bx

w
w

Margin

(wTxi+b)/||w|| > +c/||w|| for all xi in class 2
(wTxi+b)/||w|| < −c/||w|| for all xi in class 1

O l

Class 1

Class 2
Or more compactly:

(wTxi+b)yi /||w|| >c/||w||

The margin between two points
m = d− + d+ =d - d+
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Maximum Margin Classification
The margin is:

( )T 2

Here is our Maximum Margin Classification problem:
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Maximum Margin Classification, 
con'd.

The optimization problem:
c

But note that the magnitude of c merely scales w and b, and does 
not change the classification boundary at all! (why?)
So we instead work on this cleaner problem:
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The solution to this leads to the famous Support Vector Machines -
-- believed by many to be the best "off-the-shelf" supervised learning 
algorithm
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Support vector machine
A convex quadratic programming problem
with linear constrains:with linear constrains:

The attained margin is now given by

Only a few of the classification constraints are relevant support vectors
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Constrained optimization
We can directly solve this using commercial quadratic programming (QP) code
But we want to take a more careful investigation of Lagrange duality, and the 
solution of the above in its dual form. 

deeper insight: support vectors, kernels …
more efficient algorithm
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Digression to Lagrangian Duality
The Primal Problem

wf )(min
Primal:

The generalized Lagrangian:

the α's (α ≥0) and β's are called the Lagarangian multipliers
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the α s (αι≥0) and β s are called the Lagarangian multipliers 

Lemma:

A re-written Primal:
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Lagrangian Duality, cont.
Recall the Primal Problem:

)(i βL

The Dual Problem:

Theorem (weak duality): 

),,(maxmin ,, βααβα w
iw L0≥

),,(minmax ,, βααβα wwi
L0≥

** )(i)(id ≤ ββ LL

Theorem (strong duality):
Iff there exist a saddle point of                   , we have
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A sketch of strong and weak 
duality

Now, ignoring h(x) for simplicity, let's look at what's happening 
graphically in the duality theorems.

** )()(maxmin      )()(minmax pwgw fwgwfd T
w

T
w ii

=+≤+= ≥≥ αα αα 00

)(wf

)(wg
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A sketch of strong and weak 
duality

Now, ignoring h(x) for simplicity, let's look at what's happening 
graphically in the duality theorems.
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The KKT conditions
If there exists some saddle point of L, then the saddle point 
satisfies the following "Karush-Kuhn-Tucker" (KKT) g ( )
conditions:
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Theorem: If w*, α* and β* satisfy the KKT condition, then it is also a 
solution to the primal and the dual problems.
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Solving optimal margin classifier
Recall our opt problem:

1

This is equivalent to
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Write the Lagrangian:

Recall that (*) can be reformulated as
Now we solve its dual problem:   
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The Dual Problem
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We minimize L with respect to w and b first:
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The Dual Problem, cont.
Now we have the following dual opt problem:
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This is, (again,) a quadratic programming problem.
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( g ) q p g g p
A global maximum of αi can always be found. 
But what's the big deal??
Note two things:

1. w can be recovered by 

2. The "kernel"
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See next …

More later …
17© Eric Xing @ CMU, 2006-2011

I. Support vectors
Note the KKT condition --- only a few αi's can be nonzero!!

miwgα ii ,,1    ,0)( K==

Class 2

α2=00
α7=0

α8=0.
6

α10=0

Call the training data points 
whose αi's are nonzero the 
support vectors (SV) 

α6=1.4

Class 1

α1=0.8

α2=0

α3=0

α4=0

α5=0

α9=0
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Support vector machines
Once we have the Lagrange multipliers {αi}, we can 
reconstruct the parameter vector w as a weighted combination p g
of the training examples:

For testing with a new data z

∑
∈

=
SVi

iii yw xα

Compute                                                      

and classify z as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly
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Interpretation of support vector 
machines

The optimal w is a linear combination of a small number of 
data points. This “sparse” representation can be viewed asdata points. This sparse  representation can be viewed as 
data compression as in the construction of kNN classifier

To compute the weights {αi}, and to use support vector 
machines we need to specify only the inner products (or 
kernel) between the examples j

T
i xx

We make decisions by comparing each new example z with 
only the support vectors:
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Non-linearly Separable Problems

Class 2

We allow “error” ξi in classification; it is based on the output of 
the discriminant function wTx+b
ξi approximates the number of misclassified samples

Class 1
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Soft Margin Hyperplane
Now we have a slightly different opt problem:
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ξi are “slack variables” in optimization
Note that ξi=0 if there is no error for xi

ξi is an upper bound of the number of errors
C : tradeoff parameter between error and margin
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Hinge Loss

Remember Ridge regression
Min [squared loss + λ wtw][ q ]

How about SVM?

regularization Loss: hinge loss
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Is this data linearly-separable?

II. The Kernel Trick

How about a quadratic mapping φ(xi)?
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II. The Kernel Trick
Recall the SVM optimization problem

mm 1

The data points only appear as inner product
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As long as we can calculate the inner product in the feature 
space, we do not need the mapping explicitly
Many common geometric operations (angles, distances) can 
be expressed by inner products
Define the kernel function K by )()(),( j

T
ijiK xxxx φφ=
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Computation depends on feature space
Bad if its dimension is much larger than input space

II. The Kernel Trick

g p p

( )∑∑
==

−
m

ji
jijiji

m

i
i Kyy

1,1

,
2
1max xxαααα

0

,,1    ,0     s.t.

∑ =

=≥
m

i

y

ki

α

α K

.0         
1

∑
=

=
i

ii yα

Where K(xi,xj) = φ(xi)t φ(xj) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

∈

bzKyzy
SVi

iii ,sign)(* xα

27© Eric Xing @ CMU, 2006-2011

Transforming the Data

φ( )
φ(  )

φ(  )
φ( )φ(  )

φ(  )

φ(  )
φ(  )φ(  )

φ(  )

φ(  )φ(  )

φ(.) φ(  )
φ(  )

φ(  )
φ( )

φ(  )

φ(  )

φ(  )
φ(  ) φ(  )

Feature spaceInput space
Note: feature space is of higher 

Computation in the feature space can be costly because it is high 
dimensional

The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

Note: feature space is of higher 
dimension than the input space in 
practice
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An Example for feature mapping 
and kernels

Consider an input x=[x1,x2]
Suppose φ( ) is given as followsSuppose φ(.) is given as follows

An inner product in the feature space is
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So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly

⎠⎝ ⎦⎣⎠⎝ ⎦⎣ 22 xx
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More examples of kernel 
functions

Linear kernel (we've seen it)

')'( xxxx TK

Polynomial kernel (we just saw an example)

where p = 2, 3, … To get the feature vectors we concatenate all pth order 
polynomial terms of the components of x (weighted appropriately)

')',( xxxxK =

( )pTK ')',( xxxx += 1

Radial basis kernel

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The Optimization Problem
The dual of this new constrained optimization problem is

∑∑
==

−=
m

ji
j

T
ijiji

m

i
i yy

11 2
1

,

)()(max xxααααα J     

.0         

,,1    ,0     s.t.

1
∑

=

=

=≤≤
m

i
ii

i

y

miC

α

α K

This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi 
now
Once again, a QP solver can be used to find αi
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The SMO algorithm
Consider solving the unconstrained opt problem:

We’ve already seen several opt algorithms! 
?
?
?

Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
Constrained optimization:
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Question: can we do coordinate along one direction at a time 
(i.e., hold all α[-i] fixed, and update αi?)
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The SMO algorithm

Repeat till convergence

1. Select some pair αi and αj to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J(α) with respect to αi and αj, while holding all the other 
αk 's (k ≠ i; j) fixed.k ( ; j)

Will this procedure converge?
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Convergence of SMO
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KKT:

Let s hold α3 ,…, αm fixed and reopt J w.r.t. α1 and α2
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Convergence of SMO
The constraints:

The objective:j

Constrained opt:
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Cross-validation error of SVM
The leave-one-out cross-validation error does not depend on 
the dimensionality of the feature space but only on the # of y p y
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave =
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Summary
Max-margin decision boundary

Constrained convex optimization

Duality

The KTT conditions and the support vectors

N bl d l k i blNon-separable case and slack variables

The SMO algorithm
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