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What is a good Decision sels
Boundary? o
Tt
e Consider a binary classification /]
task with y = +1 labels (not 0/1 as X /

before).

e When the training examples are
linearly separable, we can set the
parameters of a linear classifier
so that all the training examples
are classified correctly

e Many decision boundaries!
e Generative classifiers fX/j) ‘;7 Vm/)o
e Logistic regressions ... P(?/X )= /72.,5)( y
e Are all decision boundaries
equally good?
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What is a good Decision selt
Boundary? o
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Not All Decision Boundaries Are | 32:
Equal! '

e Why we may have such boundaries?
e Irregular distribution
e Imbalanced training sizes
e outliners
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Classification and Margin

e Parameterzing decision boundary
e Letw denote a vector orthogonal to the decision boundary, and b denote a scalar

"offset" term, then we can write th ision boundary as: _ R
A = Xl
X wix+b=0 W LJ X [)(J

woot- g4 b
Wil
N s

i " b J
: =lvol;7ia{wv: (- ),
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Classification and Margin o

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

a
w b
Xt =0
N .
e Margin
W
) o ﬂvTxi+b)/||w|| > fﬁﬂ'W” for all x;in class 2
(WTx+b)/||wl| < —c/||w| for all x;in class 1
o -
= (@) Or more compactly:
= o Class 2 (Wb, ] Gl
(| [ ] ]
The margin between two points
(] ] d- */dj' m=d-+g*=
Class 1 /

M1
(W

© Eric Xing @ CMU, 2006-2011 6




Maximum Margin Classification

e The margin is:

T
w 2c
m=—oI\x.—x.|]=—
(1 A 7

max

st Ly,wWx +b)l|w]|=clw], Vi

W’Vﬁm
Ok w<t$
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Maximum Margin Classification,
con'd. ot

e The optimization problem:
&
" T |

y.(W'x, +b) /||w|| 2\&/||w||, Vi
e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)
e So we instead work on this cleaner problem:

1 \
max, , M my. wi
s.t

(W'x, +b)>1, Vi
e The solution to this leads to the famous -
-- believed by many to be the best "off-the-shelf" supervised learning
algorithm
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Support vector machine 3 5
|
e A convex quadratic programming proble
with linear constrains: ¢ ”
e

max, .|
"]

| y,(wW'x +b) 21,
1
e The attained margin—i_smwﬁuj‘H

e Only a few of the classification constraints are relevant = support vectors

Wé[wj i,

i

W

e Constrained optimization
e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

=> deeper insight: support vectors, kernels ...
=> more efficient algorithm

[ X X ]
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Digression to Lagrangian Duality | ¢

e The Primal Problem
min, f(w) &

imal:
~Prima st g w) <0, i=1,...,k ) >0
h(w)=0, i=1,...,/ -fd <y

The generalized Lagrangian:

k /
L(w,a,f)= W)+ g, + Bh(w)
i=1 i=1
the o's («,20) and f's are called the Lagarangian multipliers

Lemma:

w) if wsatisfies primal constraints
< M, z(w,a,ﬂ)={f( ) P
M 0

o/w

A re-written Primal:
min, max, ;.o £(w a, )
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Lagrangian Duality, cont. 5
e Recall the Primal Problem:
min mMax,, 5,0 L(w,a,p)
e The Dual Problem:
maX, 5.0 min £ (w,a, f)
e Theorem (weak duality):
d =max, ,,.omin, L(wa,p) < min max,,, ., L(w.a f)=p
e Theorem (strong duality): »
Iff there exist a saddle point of .£2(w,a, f), we have
d = p*
© Eric Xing @ CMU, 2006-2011 11
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A sketch of strong and weak sels
duality -

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d" =max, omin, f(w)+a’g(w) < min,max, .o £(w)+a’g(w) = p’

JS(w)

g(w)
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A sketch of strong and weak selt
duality -
e Now, ignoring A(x) for simplicity, let's look at what's happening |
graphically in the duality theorems.
d" =max, omin, f(w)+a’g(w) < min, max,., f(w)+a'gw)=p’
S (w)
gw)
[ X X ]
[ X X X
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The KKT conditions :

e |[f there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

i,é’(w,a,,B)=0, i=1...k
ow,

1

O ptwa,f)=0, i=1..I

p;
a,g,(w)=0, i=1...m
gwW)<0, i=1l....m
a, 20, i=1....m

e Theorem: If w*, &* and S* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier |2
|
e Recall our opt problem:
max,, , 1
o\
s.t
y.(W'x, +b) 21, Vi
e This is equivalent to
. 1,
min,, —w'w
2 (%)
s.t T .
1-y(wx,+b)<0, Vi
e Write the Lagrangian:
L(w,b,a)= ;wTW—Zai [yi(wal. +b)—1]
i=1
o Recall that (*) can be reformulated as min,,, max, .o, £(w,b,a)
Now we solve its dual problem: max, .o min, , £(w,b, )
© Eric Xing @ CMU, 2006-2011 15
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L(w,b,a) =—WTW—Z;ai[yi(wai +b)—1] 8022
i= [ X J
The Dual Problem :

max, .o min,,, £(w,b,a)

e We minimize .£ with respect to w and b first:

Vwﬁ(w,b,a)=w—2aiyixi=0, (*)
i1
V,L(wba)=>Y ay =0, (*%)
i1
Note that (*) implies: w= iaiyixi (***)
i1

e Plug (***) back to .£ , and using (**), we have:

m 1 m
L(wb,a)= Zai > Z%%%)’@
i1

ij=1
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The Dual Problem, cont. o
e Now we have the following dual opt problem:
m 1 m
max, ](a) = Zlai _E Eaiajyiyj(xzxj)
i=! i,j=
st. 20, i=1...k
Zaiyi =0.
i=1
e Thisis, (again,) a quadratic programming problem.
e A global maximum of ¢, can always be found.
e But what's the big deal??
e Note two things: ”
1. wcan be recovered by @ See next ...
i=1
2. The "kernel" @ More later ...
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|. Support vectors :

¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!

Call the training data points
whose g's are nonzero the
support vectors (SV)
=0
(€4 §2=0
a,;=0.8
wix+b=1
wix+b=0
wix4+b=-1
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Support vector machines " o
s -—

v

e Once we have the Lagrange multipliers {¢;}, we can NV
reconstruct the parameter vector w as a weighted combination
of the training examples:

e For testing with a new data@

e Compute
@H) = Zaiyi(xf@+b >
ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly
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Interpretation of support vector
machines '

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {¢;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples Xiij

e We make decisions by comparing each new example Z with
only the support vectors:

y*= sign( > ay, (XiTz)+ b]

ieSV
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Non-linearly Separable Problems |3
I
Class 2
o
6}
wix+b=1
Class 1 WTX +6=0
wix4+b=-1
e We allow “error” &, in classification; it is based on the output of
the discriminant function w’x+b
e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane :

e Now we have a slightly different opt problem:

min,,, ;wrwo@ S/@‘é V/ML

y,(wW'x, +b)21-&, Vi
£20, Vi

s.t

&; are “slack variables” in optimization

Note that =0 if there is no error for x;

&; is an upper bound of the number of errors

C : tradeoff parameter between error and margin
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Hinge Loss 02
[
. . |
¢ Remember Ridge regression ( \ | )
. i + ) wt N R (wl
Min [squared loss + A wiw] T\N\v\\k Z [+ ewx; + l
= LIL
e How about SVM?
e
ArgINilly,, 1y who + A Z max(1 — y;(w'z; +6),0)
1
regularization Loss: hinge loss
min,,,, |
s.t yi(wai +b) >1, Vi — | 4e y—17
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lI. The Kernel Trick '
e Is this data linearly-separable?
*— - — 20—0—0—0—0
0 x
e How about a quadratic mapping ¢(x;)?
[ X X ]
[ X X X
s
ll. The Kernel Trick -

e Recall the SVM optimization problem
max,  7(@)=3 a5 S aany,Kx,)
i=1 i,j=1

st. 0<¢g,<C, i=1....m

iaiyi =0.
i=1
e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x,)=¢(x,)" #(x,)
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II. The Kernel Trick

e Computation depends on feature space
e Bad if its dimension is much larger than input space

m 1 m
max,, Zai 5 Zaia/.y,.yjK(X,. 'X./)
i=1

ij=1

st. 20, i=1....k

Where K(x,x) = $06) 6(x)  y*(z) = sign( S ayK(x,,z)+ bj

ieSV

[ X X ]

esce

. [ L
Transforming the Data -

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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An Example for feature mapping
and kernels

e Consider an input x=[x,,x,]
e Suppose #.) is given as follows

¢([x1 ] =1,32x,,72x,, 32, x% \2x,x,

e Aninner product in the feature space is

M)

e So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,X') =(1+xTx‘)2
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More examples of kernel
functions

e Linear kernel (we've seen it)
K(x,x)=x"x'
e Polynomial kernel (we just saw an example)
K(x,x')= (1+xTx‘)”

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

e Radial basis kernel
K(x,x") = exp(— ;”x — x'||2)

In this case the feature space consists of functions and results in a non-
parametric classifier.
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The Optimization Problem

|
e The dual of this new constrained optimization problem is

m 1 m
max, J(a)= Zai ) Zaia/y,.y_, (XiTX./)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i )y, = 0.
i=1

e This is very similar to the optimization problem in the linear

separable case, except that there is an upper bound C on g
now

e Once again, a QP solver can be used to find o

© Eric Xing @ CMU, 2006-2011 31

The SMO algorithm

e Consider solving the unconstrained opt problem:

max Wi(ay, ag,...,a.n)
(e
e We've already seen several opt algorithms!
e ?

o ?
o ?

e Coordinate ascend:
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Coordinate ascend -

[ X X ]

0000

HH
Sequential minimal optimization 4

e Constrained optimization:

m 1 m
max,, j(a):zai_g Zaiajyiyj(XfTXj)
i=1

i,j=1

st. 0<¢g,<C, i=1....m

i ay, = 0.
i=1

e Question: can we do coordinate along one direction at a time

(i.e., hold all ¢, fixed, and update «.?)
[ 1

© Eric Xing @ CMU, 2006-2011
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The SMO algorithm

Repeat till convergence

1. Select some pair ¢; and ¢; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(a) with respect to o, and «;, while holding all the other
o 's (k #1; j) fixed.

Will this procedure converge?

o000

0000

coee
Convergence of SMO °e

m 1 m
max,, j(a)zzai_Ezaiajyiyj(xfTXj)
i=1

ij=1

st. 0<e, <C, i=1..k

i .y, = 0.
i=1

KKT:

e Letshold ¢;,..., ¢, fixed and reopt J w.r.t. ¢, and «,
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Convergence of SMO :
e The constraints: .

a1y +agys = §

0<a; <C %H """""""""""""""""" oy ey =

0<a, <C

e The objective: L L
Jlar, ag,. .., ) = T (€ — a2y2)y1. 2, . . ., )

e Constrained opt:
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Cross-validation error of SVM .

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

Leave-one-out CV error = #sup_p(_)rt vectors
# of training examples
1 e
N ® ®
@
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Summary

e Max-margin decision boundary

e Constrained convex optimization

Duality

e The KTT conditions and the support vectors

e Non-separable case and slack variables

The SMO algorithm
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