

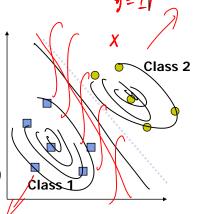
Eric Xing

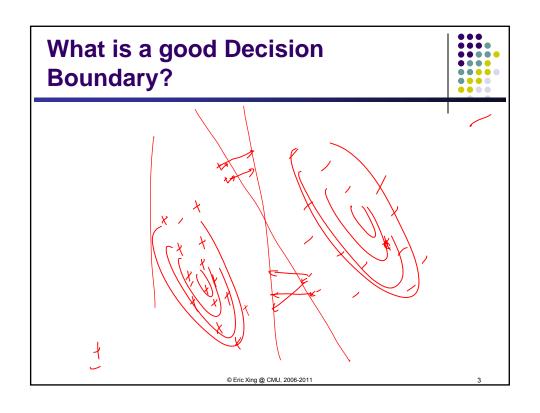
Lecture 17, November 9, 2011

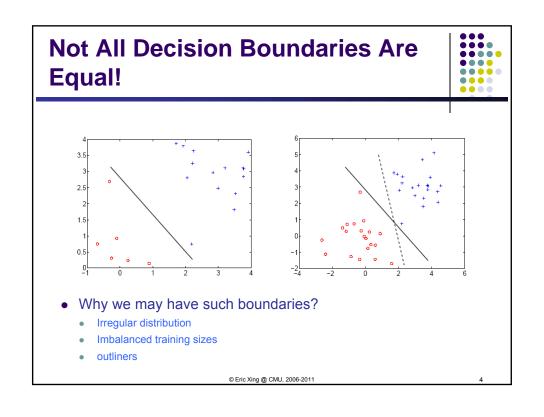
© Eric Xing @ CMU, 2006-2011

What is a good Decision Boundary?

- Consider a binary classification task with y = ±1 labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
 Generative classifiers
 - Generative classifiers
 Logistic regressions ... P(D(X) = THP-IX
- Are all decision boundaries equally good?

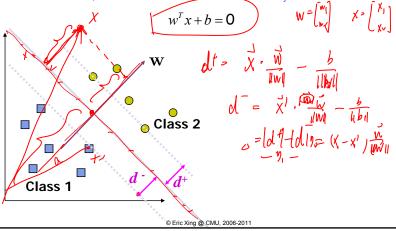






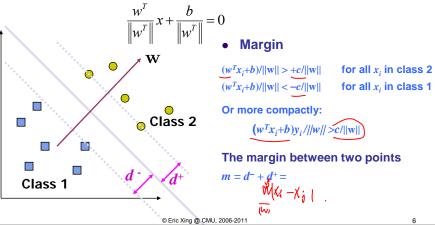
Classification and Margin

- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:



Classification and Margin

- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:



Maximum Margin Classification

• The margin is:

$$m = \frac{w^{T}}{\|w\|} \left(x_{i^{*}} - x_{j^{*}} \right) = \frac{2c}{\|w\|}$$

• Here is our Maximum Margin Classification problem:

Maximum Margin Classification, con'd.

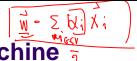
• The optimization problem:

$$\max_{w,b} \quad \frac{\aleph}{\|w\|} \begin{cases} \\ \\ \\ \\ \\ \end{cases}$$
s.t
$$y_i(w^T x_i + b) / \|w\| \ge \aleph / \|w\|, \quad \forall i$$

- But note that the magnitude of *c* merely scales *w* and *b*, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

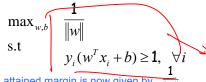
$$\max_{w,b} \frac{1}{\|w\|} \quad \text{Minj.} \quad \|w\|$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

The solution to this leads to the famous Support Vector Machines -- believed by many to be the best "off-the-shelf" supervised learning
 algorithm



Support vector machine

- A convex quadratic programming problem with linear constrains:



- The attained margin is now given by
- Only a few of the classification constraints are relevant -> support vectors
- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
 - → deeper insight: support vectors, kernels ...
 - → more efficient algorithm

© Eric Xing @ CMU, 2006-2011

Digression to Lagrangian Duality

• The Primal Problem

$$\min_{w} f(w) \in$$

s.t.
$$g_i(w) \le 0$$
, $i = 1,...,k$ $f(x) > 0$
 $h_i(w) = 0$, $i = 1,...,l$

The generalized Lagrangian:

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

the α 's ($\alpha \ge 0$) and β 's are called the Lagarangian multipliers

$$\max_{\alpha,\beta,\alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}$$

A re-written Primal:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

Lagrangian Duality, cont.

• Recall the Primal Problem:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

• The Dual Problem:

$$\max_{\alpha,\beta,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

• Theorem (weak duality):

$$d^* = \max_{\alpha, \beta, \alpha_i \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le \min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) = p^*$$

• Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w,\alpha,\beta)$, we have

$$d^* = p^*$$

© Eric Xing @ CMU, 2006-2011

11

A sketch of strong and weak duality

• Now, ignoring *h*(*x*) for simplicity, let's look at what's happening graphically in the duality theorems.

$$d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$$

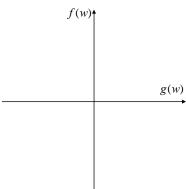
f(w)

© Eric Xing @ CMU, 2006-2011

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

$$d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$$



© Eric Xing @ CMU, 2006-2011

13

The KKT conditions

 If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial}{\partial w_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, \dots, k$$

$$\frac{\partial}{\partial \beta_i} \mathcal{L}(w, \alpha, \beta) = 0, \quad i = 1, ..., l$$

$$\alpha_i g_i(w) = 0, \quad i = 1, \dots, m$$

$$g_i(w) \le 0, \quad i = 1, \dots, m$$

$$\alpha_i \ge 0, \quad i = 1, \dots, m$$

• **Theorem**: If w^* , α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

© Eric Xing @ CMU, 2006-2011

4.4

Solving optimal margin classifier

• Recall our opt problem:

$$\max_{w,b} \underbrace{\left(\frac{1}{\|w\|}\right)}_{s.t}$$

$$\underline{y_i(w^Tx_i + b) \ge 1}, \quad \forall i$$

• This is equivalent to

$$\min_{w,b} \frac{1}{2} \frac{w^T w}{1 - y_i (w^T x_i + b) \le 0}, \quad \forall i$$
(*)

Write the Lagrangian.

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} w^{T} w - \sum_{i=1}^{m} \alpha_{i} \left[y_{i}(w^{T} x_{i} + b) - 1 \right]$$

• Recall that (*) can be reformulated as $\min_{w,b} \max_{\alpha_i \geq 0} \mathcal{L}(w,b,\alpha)$ Now we solve its **dual problem**: $\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$

© Eric Xing @ CMU, 2006-2011

15

$\mathcal{L}(w,b,\alpha) = \frac{1}{2}w^Tw - \sum_{i=1}^{m} \alpha_i \left[y_i(w^Tx_i + b) - 1 \right]$ **The Dual Problem**

$$\max_{\alpha \geq 0} \min_{w, b} \mathcal{L}(w, b, \alpha)$$

We minimize ℒ with respect to w and b first:

$$\nabla_{w} \mathcal{L}(w,b,\alpha) = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0,$$
 (*)

$$\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^m \alpha_i y_i = \mathbf{0}, \qquad (**)$$

Note that (*) implies:
$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 (***)

• Plug (***) back to \mathcal{L} , and using (**), we have:

$$\mathcal{L}(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

© Eric Xing @ CMU, 2006-2011

The Dual Problem, cont.

• Now we have the following dual opt problem:

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $\alpha_{i} \ge 0$, $i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- This is, (again,) a quadratic programming problem.
 - A global maximum of α_i can always be found.
 - But what's the big deal??
 - Note two things:
 - 1. w can be recovered by
- $w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{X}_i$

See next ...

2. The "kernel"

More later ...

© Eric Xing @ CMU, 2006-2011

17

I. Support vectors

• Note the KKT condition --- only a few α 's can be nonzero!!

Class 2
$$\alpha_8 = 0. \qquad \alpha_{10} = 0$$

$$\alpha_5 = 0$$

$$\alpha_4 = 0$$

$$\alpha_6 = 1.4$$

$$\alpha_9 = 0$$

$$\alpha_9 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_9 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_6 = 1.4$$

$$\alpha_9 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_6 = 1.4$$

$$\alpha_9 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_6 = 0.4$$

$$\alpha_7 = 0.8$$

$$\alpha_8 = 0.8$$

$$\alpha_8 = 0.8$$

$$\alpha_1 = 0.8$$

$$\alpha_9 = 0$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_6 = 0.8$$

$$\alpha_7 = 0.8$$

$$\alpha_8 = 0.8$$

$$\alpha_8 = 0.8$$

$$\alpha_8 = 0.8$$

$$\alpha_1 = 0.8$$

$$\alpha_1 = 0.8$$

$$\alpha_2 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\alpha_5 = 0$$

$$\alpha_6 = 0.8$$

$$\alpha_7 = 0.8$$

$$\alpha_8 = 0.8$$

Support vector machines

• Once we have the Lagrange multipliers $\{\alpha_i\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$w = \sum_{i \in SV} \alpha_i y_i \mathbf{X}_i$$

- For testing with a new data z
 - Compute

$$\underbrace{\left(\mathbf{w}^{T}\mathbf{z} + b = \sum_{i \in SV} \alpha_{i} y_{i} \left(\mathbf{x}_{i}^{T}\mathbf{z}\right) + b\right)}_{i \in SV}$$

and classify z as class 1 if the sum is positive, and class 2 otherwise

• Note: w need not be formed explicitly

© Eric Xing @ CMU, 2006-2011

10

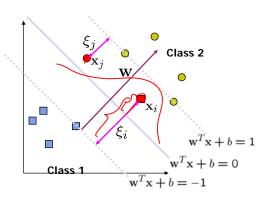
Interpretation of support vector machines

- The optimal **w** is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights {α_i}, and to use support vector machines we need to specify only the inner products (or kernel) between the examples x_i^Tx_i
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i (\mathbf{x}_i^T z) + b\right)$$

© Eric Xing @ CMU, 2006-2011

Non-linearly Separable Problems



- We allow "error" ξ_i in classification; it is based on the output of the discriminant function w^Tx+b
- ξ_{i} approximates the number of misclassified samples $_{\text{@ Eric Xing @ CMU, 2006-2011}}$

Soft Margin Hyperplane

• Now we have a slightly different opt problem:

$$\min_{w,b} \quad \frac{1}{2} w^T w + C \sum_{i=1}^m \xi_i$$
 Slack furt

s.t
$$y_i(w^T x_i + b) \ge 1 - \xi_i, \forall i$$

 $\xi_i \ge 0, \forall i$

- ξ_i are "slack variables" in optimization
- Note that ξ_i =0 if there is no error for \mathbf{x}_i
- ξ_i is an upper bound of the number of errors
- C: tradeoff parameter between error and margin

Hinge Loss

- Remember Ridge regression
 - Min [squared loss + λ w^tw]

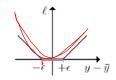
• How about SVM?

$$\operatorname{argmin}_{\{w,b\}} w^{t} w + \lambda \sum_{1}^{m} \max(1 - y_{i}(w^{t} x_{i} + b), 0)$$

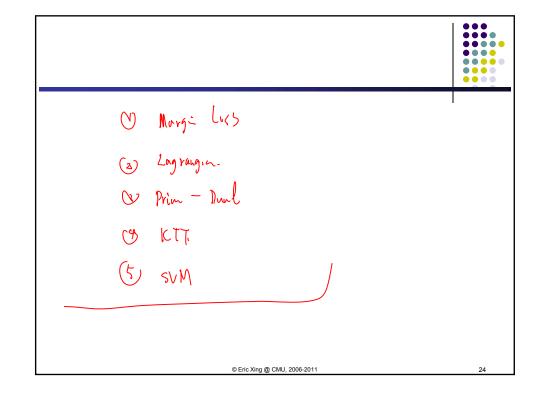
regularization

Loss: hinge loss

$$\min_{w,b} \quad ||w||$$
s.t $y_i(w^T x_i + b) \ge 1, \quad \forall i$

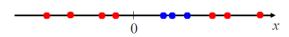


© Eric Xing @ CMU, 2006-2011

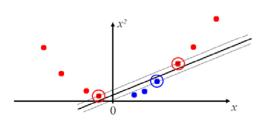


II. The Kernel Trick

• Is this data linearly-separable?



• How about a quadratic mapping $\phi(x_i)$?



© Eric Xing @ CMU, 2006-2011

25

II. The Kernel Trick

• Recall the SVM optimization problem

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

s.t.
$$0 \le \alpha_i \le C$$
, $i = 1, ..., m$

$$\sum_{i=1}^m \alpha_i y_i = 0.$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$

© Eric Xing @ CMU, 2006-2011

II. The Kernel Trick

- Computation depends on feature space
 - Bad if its dimension is much larger than input space

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
s.t. $\alpha_{i} \geq 0, \quad i = 1, ..., k$

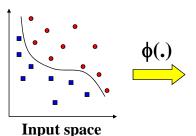
$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

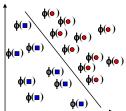
Where
$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^t \phi(\mathbf{x}_j)$$
 $y^*(z) = \text{sign}\left(\sum_{i \in SV} \alpha_i y_i K(\mathbf{x}_i, z) + b\right)$

© Eric Xing @ CMU, 2006-2011

27

Transforming the Data





Feature space

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

© Eric Xing @ CMU, 2006-2011

An Example for feature mapping and kernels

- Consider an input $\mathbf{x} = [x_1, x_2]$
- Suppose $\phi(.)$ is given as follows

$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2$$

• An inner product in the feature space is

$$\left\langle \phi \left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right], \phi \left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right] \right\rangle =$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^2$$

© Eric Xing @ CMU, 2006-2011

29

More examples of kernel functions

• Linear kernel (we've seen it)

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

• Polynomial kernel (we just saw an example)

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^p$$

where p = 2, 3, ... To get the feature vectors we concatenate all pth order polynomial terms of the components of x (weighted appropriately)

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space consists of functions and results in a non-parametric classifier.

© Eric Xing @ CMU, 2006-2011

The Optimization Problem

• The dual of this new constrained optimization problem is

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound ${\it C}$ on α_i now
- Once again, a QP solver can be used to find α_i

© Eric Xing @ CMU, 2006-2011

31

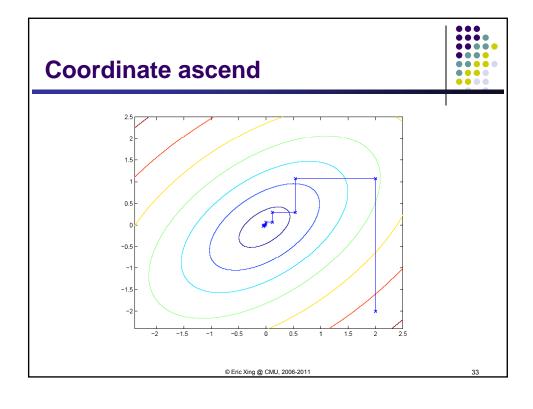
The SMO algorithm

• Consider solving the unconstrained opt problem:

$$\max_{\alpha} W(\alpha_1, \alpha_2, \dots, \alpha_m)$$

- We've already seen several opt algorithms!
 - . .
 - . 7
 - . 7
- Coordinate ascend:

© Eric Xing @ CMU, 2006-2011



Sequential minimal optimization

• Constrained optimization:

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C, \quad i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{\text{[-i]}}$ fixed, and update $\alpha_{\text{[}?)}$)

© Eric Xing @ CMU, 2006-2011

Repeat till convergence

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Re-optimize $J(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i; j)$ fixed.

Will this procedure converge?

© Eric Xing @ CMU, 2006-2011

35

Convergence of SMO

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

KKT:

s.t.
$$0 \le \alpha_i \le C$$
, $i = 1, ..., k$

$$\sum_{i=1}^m \alpha_i y_i = 0.$$

• Let's hold α_3 ,..., α_m fixed and reopt J w.r.t. α_1 and α_2

© Eric Xing @ CMU, 2006-2011

Convergence of SMO

• The constraints:

$$\alpha_1 y_1 + \alpha_2 y_2 = \xi$$
$$0 \le \alpha_1 \le C$$
$$0 \le \alpha_2 \le C$$

 $\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = \zeta$

• The objective:

$$\mathcal{J}(\alpha_1, \alpha_2, \dots, \alpha_m) = \mathcal{J}((\xi - \alpha_2 y_2) y_1, \alpha_2, \dots, \alpha_m)$$

• Constrained opt:

© Eric Xing @ CMU, 2006-2011

37

Cross-validation error of SVM

• The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave - one - out CV error = $\frac{\text{# support vectors}}{\text{# of training examples}}$ H1 $\frac{\text{H2}}{\text{w} \cdot \text{x} - b = +1}$ $\frac{\text{w} \cdot \text{x} - b = 0}{\text{w} \cdot \text{x} - b = 0}$

Summary

- Max-margin decision boundary
- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The SMO algorithm

© Eric Xing @ CMU, 2006-2011