Machine Learning

10-701/15-781, Fall 2011

( X X J
Alternative Strategies of Learning (1) 0000
PCA Topic models: b
versus 10pIiCc modaeils. 'YX X
nonprobabilistic vs. probabilistic approach for o0
subspace learning ®
© Eric Xing @ CMU, 2006-2011 1
[ J
[ J
M
Elements of Learning :

e Here are some important elements to consider before you start:

e Task:
Embedding? Classification? Clustering? Topic extraction? ...
Data and other info:
Input and output (e.g., continuous, binary, counts, ...)
Supervised or unsupervised, of a blend of everything?
Prior knowledge? Bias?
e Models and paradigms:
BN? MRF? Regression? SVM?
Bayesian/Frequents ? Parametric/Nonparametric?
Objective/Loss function:
MLE? MCLE? Max margin?
Log loss, hinge loss, square loss? ...
Tractability and exactness trade off:
Exact inference? MCMC? Variational? Gradient? Greedy search?
Online? Batch? Distributed?
e Evaluation:

Visualization? Human interpretability? Perperlexity? Predictive accuracy?

o ltis better to consider one element at a time!
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Learning Graphical Models &
e Scenarios:
e completely observed GMs
directed
undirected
e partially observed GMs
directed
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood or conditional likelihood estimation (MLE, MLCE)
e Bayesian estimation
e Maximal "Margin"
[ ]

e We use learning as a name for the process of estimating the
parameters, and in some cases, the topology of the network, from
data.
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nonprobabilistic vs. probabilistic
approach for subspace learning
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The Problem:
NLP and Data Mining

We want:

e Semantic-based search

e infer topics and categorize
documents

e Multimedia inference
e Automatic translation

e Predict how topics
evolve

Modeling document collections

e A document collection is a dataset where each data point is
itself a collection of simpler data.

e Text documents are collections of words.
e Segmented images are collections of regions.
e User histories are collections of purchased items.

e Many modern problems ask questions of such data.

e s this text document relevant to my query?
e Which documents are about a particular topic?
e How have topics changed over time?

e What does author X write about? Who is likely to write about topic Y? Who wrote
this specific document?

e Which category is this image in? Create a caption for this image.
e What movies would | probably like?
e andsoon.....
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Text document retrieval :
e Represent each document by a high-dimensional vector in the
space of words
T leaning
3| joumnal
2 intelligence
Journal of Arfficial Infelligence 0 text
0| agent
. 1 internet
0| webwatcher
af the jowrial s alsa published by Mogan a P“ls
Katman....
i volume
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Example .
B Adobe Acrobat - [Isi-orig.pdf -[ojx|
T File Edit Document Took View Window Help =l =l
NM@GHS MW Mes DQEM 2 A0 00
o) B
:j Sample Term by Document matreix *
t‘: ACCETS docwment  retrieval  informagion theory  database  indeving  compuer || REL MATCH
Bl Docl | = | s | % | [ = x| R
7,
e, Do x* % x* M
% Doc 3 % x* x* R M
%
E Cuery: "IDF in comprirer-based information look-up®
Y IRt KEEm L Tl A ol
-- Relevant docs may not have the query terms
- but may have many “related” terms
-- Irrelevant docs may have the query terms
- but may not have any “related” terms
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Problems

e Looks for literal term matches

e Terms in queries (esp short ones) don’t always capture user’s information need
well

e Problems:

e Synonymy: other words with the same meaning
Car and automobile

e No associations between words are made in the vector space representation.
sim,,..(d, q)> cos(Z£(d, q))

e Polysemy: the same word having other meanings
Apple (fruit and company)
e The vector space model is unable to discriminate between different meanings of

the same word. .
sim,,...(d, )< cos(£(d, 7))

e What if we could match against ‘concepts’, that represent
related words, rather than words themselves

o000
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Subspace Learning °e

Latent Structure /

v

Words W
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Latent Semantic Indexing (LSI)

(Deerwester et al., 1990)

I
e Uses statistically derived conceptual indices instead of

individual words for retrieval

e Assumes that there is some underlying or latent
structure in word usage that is obscured by variability in
word choice

e Key idea: instead of representing documents and
queries as vectors in a t-dim space of terms

e Represent them (and terms themselves) as vectors in a lower-dimensional space
whose axes are concepts that effectively group together similar words

e Uses SVD to reduce document representations,
e The axes are the Principal Components from SVD (singular value decomposition)

e So what is SVD?
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Basic Concept

e Areas of variance in data are where items can be best discriminated
and key underlying phenomena observed

e If two items or dimensions are highly correlated or dependent
e They are likely to represent highly related phenomena

e Ifthey tell us about the same underlying variance in the data, combining them to form a single
measure is reasonable

Parsimony
Reduction in Error

e We want to combine related variables, and focus on uncorrelated or independent ones,
especially those along which the observations have high variance

e We look for the phenomena underlying the observed covariance/co-
dependence in a set of variables

e These phenomena are called “factors” or “principal components” or
“independent components,” depending on the methods used
e Factor analysis: based on variance/covariance/correlation

e Independent Component Analysis: based on independence
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An example:
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Principal Component Analysis

e Most common form of factor
analysis

e The new variables/dimensions

e Are linear combinations of the
original ones
e Are uncorrelated with one
another
Orthogonal in original
dimension space
e Capture as much of the
original variance in the data as
possible
e Are called Principal
Components

PC 2 PC 1

Orthogonal directions of greatest
variance in data

Projections along PC1
discriminate the data most along
any one axis
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Principal Component Analysis

e First principal component is
the direction of greatest
variability (covariance) in the

PC2 PG 1 data

e Second is the next orthogonal
(uncorrelated) direction of
greatest variability

e So first remove all the variability
along the first component, and
s then find the next direction of
greatest variability

e Andsoon...
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Computing (learning) the §§:
Components o

e Data points are vectors in a multidimensional space
e Projection of vector x onto an axis (dimension) u is uTx

e Direction of greatest variability is that in which the average square of
the projection is greatest

e l.e. usuch that E((u™)?) over all x
is maximized
e Matrix representation:

e (we subtract the mean along each dimension,
and center the original axis system at the
centroid of all data points, for simplicity)

e This direction of u is the direction of the 7

first Principal Component

© Eric Xing @ CMU, 2006-2011 16




Computing the Components

e E((u™x)?) = Z(u™x;)?/m = (u™X) (u™X)" /m = uT(XX"/m)u

e The covariance matrix C = XXT contains the correlations
(similarities) of the original axes based on how the data
values project onto them

e So we are looking for u that maximizes u™Cu, subject to u
being unit-length

e Itis maximized when u is the principal eigenvector of the
matrix C, in which case

e uTCu=uTAu= A ifuis unit-length, where A is the principal eigenvalue of
the correlation matrix C

e The eigenvalue denotes the amount of variability captured along that dimension

[ X X ]

s

[ XN
Why the Eigenvectors? 4

Maximise u™XXTu

s.t u'u=1

Construct Langrangian u™X™u —AuTu

Vector of partial derivatives set to zero
XXTu—Au = (xx"—=A)u =0

As u # 0 then u must be an eigenvector of XXTwith eigenvalue A

© Eric Xing @ CMU, 2006-2011 18




Eigenvalues & Eigenvectors

|
e For symmetric matrices, eigenvectors for distinct eigenvalues

are orthogonal

SV oy = AgVgop and 4 # 4, = vy ev, =0
e All eigenvalues of a real symmetric matrix are real.

if |S—Al|=0andS=S"= 1eR

e All eigenvalues of a positive semidefinite matrix are non-
negative

vweR", wSw>0,thenif Sy=Av=1>0

© Eric Xing @ CMU, 2006-2011 19

Eigen/diagonal Decomposition

e Let S € R"™*™be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

Unique

for
e Theorem: Exists an eigen decomposition distinc

t eigen-

S — Um diagonal vallias

(cf. matrix diagonalization theorem)

e Columns of U are eigenvectors of S

e Diagonal elements of A are eigenvalues of S

A = diag()\l, ce ,/\m), /\@' = /\@'_4_1

© Eric Xing @ CMU, 2006-2011 20
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Computing the Components ¢
I
e S0, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples
e Geometr
e Linear
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PCs, Variance and Least-Squares |:

e The first PC retains the greatest amount of variation in the
sample

e The k" PC retains the kth greatest fraction of the variation in
the sample

e The ki largest eigenvalue of the correlation matrix C is the
variance in the sample along the ki PC

e The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones

© Eric Xing @ CMU, 2006-2011 22




How Many PCs?

e For n original dimensions, sample covariance matrix is nxn, and has
up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
25 4

20

Variance (%)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t
lose much

. n dimensions in original data

. calculate n eigenvectors and eigenvalues

. choose only the first p eigenvectors, based on their eigenvalues

final data set has only p dimensions © Eric Xing @ CMU, 2006-2011 2

Latent Semantic Indexing

Fhgre 4.2 Coslne sseasrs of Socument selLity

Document
£ = * *
&
X T A D’
(mxn) (m x k) (k x k) (kx n)

This is our
K compressed
representation of a

\7\7 = ij Zk-l_-l; document

k=1
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Recall: Eigen/diagonal decomposition

e Let S € R™*™be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

e Theorem: Exists an eigen decomposition
diagonal
s—uAut

(cf. matrix diagonalization theorem)

e Columns of U are eigenvectors of S

e Diagonal elements of A are eigenvalues of S

A = diag()\l, ce ,/\m), /\@' = /\@'_4_1
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Singular Value Decomposition

For an mxn matrix A of rank r there exists a factorization

(Singular Value Decomposition = SVD) as follows:
A=UzV'
AR N

mxm| mxm| | Vis mxn

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues 1, ... A, of AAT are the eigenvalues of ATA.

o =A

¥ =diag (0'1...0'r)<ﬁ,5ingular values!

© Eric Xing @ CMU, 2006-2011 26
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SVD and PCA :
e The first root is called the prinicipal eigenvalue which has an
associated orthonormal (uTu = 1) eigenvector u
e Subsequent roots are ordered such that A;> A, >... > A, with
rank(D) non-zero values.
¢ Eigenvectors form an orthonormal basis i.e. u;"u; = d;
e The eigenvalue decomposition of XXT = UZUT
o whereU =[uy, u,, ..., uyland Z =diag[A {, A, ..., Ayl
e Similarly the eigenvalue decomposition of XTX = VZVT
e The SVD is closely related to the above X=U £12 VT
e The left eigenvectors U, right eigenvectors V,
e singular values = square root of eigenvalues.
© Eric Xing @ CMU, 2006-2011 27
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Low-rank Approximation .

e Solution via SVD

A =U diag(o,,...,0,,0,....,0V"

set smallest r-k
singular values to zero

R S O
* * E - E A S S
E I = |* * .
* * E
"
L E N ;
vT

k .

Ak = E ) g_u_V_T column notation: sum
i=1 of rank 1 matrices
© Eric Xing @ CMU, 2006-2011 28
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Approximation error

e How good (bad) is this approximation?

e It's the best possible, measured by the Frobenius norm of the
error:

mln HA_XHF :HA_AKHF = Oku

X:rank (X )=k

where the o; are ordered such that ¢, > o, 4.
Suggests why Frobenius error drops as k increased.

© Eric Xing @ CMU, 2006-2011 29

Example

0.3996 -0.1037 0.5606 -0.3717 -0.3919 {0.3482 0.1029
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023

term ch2 | ch3 |ch4 |ch5 |ch6 |ch7 |ch8 |ch9 04075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 05676
controllabilit 0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230
v 1 1 0 0 1 0 0 1 0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611
¥ 0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010
observability | 1 0 0 0 1 1 0 1
S (7x7) =

realization 1 0 1 0 1 0 1 0 3.9901 0 0 0 0 0 0

0 22813 0 0 0 0 0
feedback 0 1 0 0 0 1 0 0 0 0 16705 0 0 0 0

0 0 0132 0 0 0
controller 0 1 0 0 1 1 0 0 0 0 0 0 11818 0 0

0 0 0 0 0 06623 0
observer 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0.6487
transfer o o o o |1 |1 |o |o |voe- T
function 0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505
polynomial 0 0 0 0 1 0 1 0 0.3399 04811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462

0.1889 -0.0351 -0.4582 -05788 0.2211 0.4247 0.4346

matrices 0 0 0 0 1 0 1 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000

0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330

This happenS to be a rank-7 matrix 02791 -02591 0.6442 0.1593 -0.1648 0.5455 0.2998
-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT
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e LSl analysis effectively does

e Dimensionality reduction

e Noise reduction

e Exploitation of redundant data

e Correlation analysis and Query expansion (with related words)

e Some of the individual effects can be achieved with simpler

techniques (e.g. thesaurus construction). LS| does them together.

e LSl handles synonymy well, not so much polysemy

e Challenge: SVD is complex to compute (O(n?))

e Needs to be updated as a whole as new documents are found/updated, not an
online algorithm

© Eric Xing @ CMU, 2006-2011 32
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Probabilistic Latent Semantic S
Indexing o2
I
Distribution over words
Latent Structure / P(w)= Z P(w,?)
4
Inferring latent structure
’ _P(wW|)P()
Words W P(flw) = P(w)
Prediction
P(w,,,|w)=..
00
0000
$H
How to Model Semantic? oo

e Q: What is it about?
e A: Mainly MT, with syntax, some learning

!

0.6 0.3 0.1 Mixing
Proportion
MT Syntax Learning
D Parse likelihood
Target
Tree EM
SMT .
. Noun Hidden n
Alignment o
Phrase Parameters 3
Score L °
BLEU Grammar Estimation B
CFG argMax

W

Unigram over vocabulary

Topic Models

© Eric Xing @ CMU, 2006-2011

A Hierarchical Phrase-Based Model
for Statisti ; "

We present a statistical phrase-based
Translation model that uses hierarchical

phrases—phrases that contain sub-phrasps.

The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
i isti i In our i

using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Words in Contexts

e the opposition Labor Party fared even worse, with a

predicted 35 S@AtS, seven less than last election.

© Eric Xing @ CMU, 2006-2011 35

"Words" in Contexts (con'd)

etal.ICCV 200&
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DOCUMENT 1: river? stream?
s river?
\ stream? river? stream?
river?
stream?
v
TOPIC 1
< DOCUMENT 2: river? stream? bank? stream? bank?
u . .
river? stream? bank? river? bank?
@0“006“ stream?river? bank? stream? bank?

e river? stream? bank? stream? bank? river?
stream & stream? bank? river2 bank? stream?
ey, river? bank? stream? bank?

<\ Up,
e,
9,/18
TOPIC 2

Mixture Mixture
components weights

- [ X X ]
Topic Models = sels
Mixture Membership Models 4

Generating a document

— Draw & from the prior I:rno
For each word n

- Draw z, from multinomia (@) 0
-Draw w, | z,, {f3,, | from multinomial(ﬁzn) O

z

U, w

K N,
Which prior to use? N
© Eric Xing @ CMU, 2006-2011 38
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Latent Dirichlet Allocation selt
Blei, Ng and Jordan (2003) :.
I
Essentially a Bayesian pLSil: 6 ~ Dir(w)

@ Zn, ~ Mult(8)
K Wp ~ p(Wn‘vaﬁ)

@ (o)

N

M

p(w) =3[ PO (AT, p(z,/6) (w8, ) 4O 95

© Eric Xing @ CMU, 2006-2011 39
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LSI versus Topic Model sels
o0
g . ee
(probabilistic LSI) :
documents topic
topic documents
§ x | =fwls A|lg§ DT x=wd
LSl
documents topics
documents
8 3| = 8 Topic-Mixing is via repeated
S P(W) = gl 2 3 P(2) word labeling
2 2T
Topic models
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Inference Tasks

—> HArts” “Budgets” “Children™ “Eduocation™
NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW FPROGRAM FEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS ‘TEACHER
ACTOR NEW SAYS BENNETT
FIRET STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
The Wilkum Randolph Hearst Foundation will give 2128 will to Lncaln Center,
Metropolitan Opera Co, New York Philbarmonic asd Juillised  School.  “Onr board
%t that we had & real opportumity to make & omark on the future of the pe mnnm,r
nrts with these oo am act overy bit rs important. as our eraditionn] amas of o
im health, nwdr_ll ! e Henrst |
1 the g Lineoln C‘.clm‘ﬂ
young rtists and pr
w York P]u]hanunul.- vl]l

I, where mic and the performing arth are

tanght, m]l -

! lkmlm: mupporter f the Lincaln
Center Conmolidated Corparate Fuud, will make it ususl S100,000 clenation,
o,
© Eric Xing @ CMU, 2006-2011 41
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Bayesian inference
e A possible query:
p(6, D) ="
P(z,n|D) =7
e Close form solution? 6,|D) = P, D)
P, 1D) =2
Z j( [H P 14, )P(Zom |€n)] p(6, |0!)J p(41G)dod
) p(D)
p(D) = z j 1T ( [H P | 6,)P(Z0 16, )] @ |a>)p(¢|e>d9 -d6,d¢
e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors
© Eric Xing @ CMU, 2006-2011 42
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Approximate Inference &
e Variational Inference
e Mean field approximation (Blei et al)
e Expectation propagation (Minka et al)
e Variational 2"-order Taylor approximation (Xing)
e Markov Chain Monte Carlo
e Gibbs sampling (Griffiths et al)
© Eric Xing @ CMU, 2006-2011 43
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Collapsed Gibbs sampling 2ot
(Tom Giriffiths & Mark Steyvers) °

e Collapsed Gibbs sampling

e Integrate out 7

For variables z = z,, z,, ..., Z,
Draw z®" from P(z|z; w)
z, =z,0N 2,00z @Dz O z,0

© Eric Xing @ CMU, 2006-2011 44




Gibbs sampling

¢ Need full conditional distributions for variable
e Since we only sample z we need

Pz = jlz—i, w) o< Plw;lzi = j, 2, w_3) P(2; = j|z_s)

n'e) 4 8 n'%l4a

i i
n(_zj +Wg n(_dz) + Ta
ngw) number of times word w assigned to topic j
ngd) number of times topic j used in document d
[ X X ]
. : esce
Gibbs sampling ooo
[ ]

e e
- REBoo~NourwN R —

50

iteration
1

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

S NP RPRPRPRPPRPEPRPEPO
SR RPRPNRPNNRENRENDODN

oY 5 2

© Eric Xing @ CMU, 2006-2011 46
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

NNRPRPRRPPRPRPRPRPPERPLRDO

e
REBowo~vourwn R —

5.0 JdY 5

iteration
1 2

Zj
?

PRERPNRPNODNRPNDRNDNODN
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

MNNRPRPRPRPPRPRPRPRPPDOD

P e
REBoo~vourwnr —

50 JOoYy 5

iteration
1 2

Zj
?

PRRPNRPNONRPNDEREDNODN

nlp e nta
n(_')i,j +Wg n(_df,)_ +Ta
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Plz; = jlz—;,w)
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

NNRPRPRRPPRPRPRPRPPERPLRDO

S
REBowo~vourwn R —

5.0 JdY 5

iteration
1 2
Zj Zj
2 ?
2

1

2

1

2

2

1

2

1

1

1

2

Plai = jla—i,w) x
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

MNNRPRPRPRPPRPRPRPRPPD

e e
REBowo~vourwnrk —

50 oY 5

iteration
1 2
Zj Z;
2 2
2 ?
1

2

1

2

2

1

2

1

1

1

2

Plz; = jlz—;,w)
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Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

NNRPRPRRPPRPRPRPRPPERPLRDO

e
REBowo~vourwn R —

5.0 JdY 5

iteration
1 2
Z; Zj
2 2
2 1
1 ?
2

1

2

2

1

2

1

1

1

2

nty 8 n)ta
n L+ WEnY + Ta
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Plai = jla—i,w) x

Gibbs sampling

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
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Extension 1: topic evolution?
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Extension 2:
Topic Models for Images

“beach’

© Eric Xing @ CMU, 2006-2011 Fei-Fei et al. ICCV,2005

Summary:

e Principle of sub-space learning
e Projection method to reduce the number of dimensions
e Transfer a set of correlated variables into a new set of possibly uncorrelated variables
e Map the data into a space of lower dimensionality
e Form of unsupervised learning

e Properties
e PCA: It can be viewed as a rotation of the existing axes to new positions in the space defined
by original variables; new axes are orthogonal and represent the directions with maximum
variability
e LDA: it can be viewed as a probabilistic generative model where each word in a doc is
generated from a doc-specific topic vector defining proportion of memberships from a collection
of topic-specific word distributions
e Application: In many settings in pattern recognition and retrieval, we
have a feature-object matrix.
e Dimensionality reduction for each doc/image/user
e Topic extraction and summarization of a corpus
e Trend analysis and discovery
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