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Elements of Learning
Here are some important elements to consider before you start:

Task:
Embedding? Classification? Clustering? Topic extraction? …

Data and other info:
Input and output (e.g., continuous, binary, counts, …) 
Supervised or unsupervised, of a blend of everything?
Prior knowledge? Bias? 

Models and paradigms:
BN? MRF? Regression? SVM?
Bayesian/Frequents ?  Parametric/Nonparametric?

Objective/Loss function:
MLE? MCLE? Max margin?MLE? MCLE? Max margin?
Log loss, hinge loss, square loss? …

Tractability and exactness trade off:
Exact inference? MCMC? Variational? Gradient? Greedy search?  
Online? Batch? Distributed? 

Evaluation:
Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

It is better to consider one element at a time!
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Learning Graphical Models
Scenarios:

completely observed GMsp y
directed
undirected 

partially observed GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood or conditional likelihood estimation (MLE, MLCE)
Bayesian estimation
Maximal "Margin" 
….

We use learning as a name for the process of estimating the 
parameters, and in some cases, the topology of the network, from 
data.
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nonprobabilistic vs. probabilistic 
approach for subspace learning
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The Problem: 
NLP and Data Mining

We want:

S ti b d hSemantic-based search 
infer topics and categorize 
documents
Multimedia inference
Automatic translation 
Predict how topics 
evolve
…

Research
topics

1900 2000

Research
topics
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Modeling document collections
A document collection is a dataset where each data point is 
itself a collection of simpler data.p

Text documents are collections of words.
Segmented images are collections of regions.
User histories are collections of purchased items.

Many modern problems ask questions of such data.

Is this text document relevant to my query?
Which documents are about a particular topic?p p
How have topics changed over time?
What does author X write about? Who is likely to write about topic Y? Who wrote 
this specific document?
Which category is this image in? Create a caption for this image.
What movies would I probably like?
and so on…..
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Text document retrieval
Represent each document by a high-dimensional vector in the 
space of words

7© Eric Xing @ CMU, 2006-2011

Example

-- Relevant docs may not have the query terms
but may have many “related” terms

-- Irrelevant docs may have the query terms
but may not have any “related” terms
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Problems
Looks for literal term matches

Terms in queries (esp short ones) don’t always capture user’s information need 
llwell

Problems:
Synonymy: other words with the same meaning

Car and automobile
No associations between words are made in the vector space representation.

Polysemy: the same word having other meaningso yse y t e sa e o d a g ot e ea gs
Apple (fruit and company)

The vector space model is unable to discriminate between different meanings of 
the same word.

What if we could match against ‘concepts’, that represent 
related words, rather than words themselves

9© Eric Xing @ CMU, 2006-2011

Subspace Learning

Latent Structure l

Words w
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Latent Semantic Indexing (LSI) 
(Deerwester et al., 1990)

Uses statistically derived conceptual indices instead of 
individual words for retrievalindividual words for retrieval
Assumes that there is some underlying or latent
structure in word usage that is obscured by variability in 
word choice
Key idea: instead of representing documents and 
queries as vectors in a t-dim space of terms

R t th ( d t th l ) t i l di i lRepresent them (and terms themselves) as vectors in a lower-dimensional space 
whose axes are concepts that effectively group together similar words
Uses SVD to reduce document representations, 
The axes are the Principal Components from SVD (singular value decomposition)

So what is SVD?

11© Eric Xing @ CMU, 2006-2011

Basic Concept
Areas of variance in data are where items can be best discriminated 
and key underlying phenomena observed

If two items or dimensions are highly correlated or dependent
They are likely to represent highly related phenomena
If they tell us about the same underlying variance in the data, combining them to form a single 
measure is reasonable

Parsimony
Reduction in Error

We want to combine related variables, and focus on uncorrelated or independent ones, 
especially those along which the observations have high variance

We look for the phenomena underlying the observed covariance/co-
dependence in a set of variables

These phenomena are called “factors” or “principal components” or 
“independent components,” depending on the methods used

Factor analysis: based on variance/covariance/correlation
Independent Component Analysis: based on independence
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An example:

13© Eric Xing @ CMU, 2006-2011

Principal Component Analysis
Most common form of factor 
analysis

B

The new variables/dimensions
Are linear combinations of the 
original ones
Are uncorrelated with one 
another

Orthogonal in original

O
rig

in
al

 V
ar

ia
bl

e 
B

PC 1
PC 2

Orthogonal in original 
dimension space

Capture as much of the 
original variance in the data as 
possible
Are called Principal 
Components

Orthogonal directions of greatest 
variance in data
Projections along PC1 
discriminate the data most along 
any one axis

Original Variable A
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Principal Component Analysis

First principal component is 
the direction of greatest 
variability (covariance) in the 
data
Second is the next orthogonal 
(uncorrelated) direction of 
greatest variabilityO

rig
in

al
 V

ar
ia

bl
e 

B

PC 1
PC 2

greatest variability
So first remove all the variability 
along the first component, and 
then find the next direction of 
greatest variability

And so on …
Original Variable A

15© Eric Xing @ CMU, 2006-2011

Computing (learning) the 
Components

Data points are vectors in a multidimensional space
Projection of vector x onto an axis (dimension) u is uTxProjection of vector x onto an axis (dimension) u is u x
Direction of greatest variability is that in which the average square of 
the projection is greatest

I.e. u such that E((uTx)2) over all x
is maximized
Matrix representation:

(we subtract the mean along each dimension, 
and center the original axis system at the 
centroid of all data points, for simplicity)
This direction of u is the direction of the 
first Principal Component

16© Eric Xing @ CMU, 2006-2011
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Computing the Components
E((uTx)2) = Σi(uTxi)2/m  = (uTX) (uTX)T /m = uT(XXT/m)u

The covariance matrix C = XXT contains the correlationsThe covariance matrix C = XXT contains the correlations 
(similarities) of the original axes based on how the data 
values project onto them

So we are looking for u that maximizes uTCu, subject to u
being unit-length

It is maximized when u is the principal eigenvector of the 
matrix C, in which case

uTCu = uTλu = λ if u is unit-length, where λ is the principal eigenvalue of 
the correlation matrix C
The eigenvalue denotes the amount of variability captured along that dimension

17© Eric Xing @ CMU, 2006-2011

Why the Eigenvectors?

Maximise uTXXTuMaximise u XX u 
s.t uTu = 1 

Construct Langrangian  uTXXTu – λuTu 

Vector of partial derivatives set to zero
xxTu – λu = (xxT – λI) u = 0

As u ≠ 0 then u must be an eigenvector of XXT with eigenvalue  λ

18© Eric Xing @ CMU, 2006-2011



10

For symmetric matrices, eigenvectors for distinct eigenvalues 
are orthogonal

Eigenvalues & Eigenvectors

g

All eigenvalues of a real symmetric matrix are real.

ℜ∈⇒==− λλ TSS and 0 if IS

02121212121 =•⇒≠= vvvSv λλλ  and ,},{},{},{

All eigenvalues of a positive semidefinite matrix are non-
negative

0vSv if then ,0, ≥⇒=≥ℜ∈∀ λλSwww Tn
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Let                      be a square matrix with m linearly 
independent eigenvectors (a “non-defective” matrix)

Eigen/diagonal Decomposition

p g ( )

Theorem: Exists an eigen decomposition

(cf matrix diagonalization theorem)

diagonal

Unique 
for 

distinc
t eigen-
values

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 
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So, the new axes are the eigenvectors of the matrix of 
correlations of the original variables, which captures the 

Computing the Components

g , p
similarities of the original variables based on how data 
samples project to them

Geometrically: centering followed by rotation
Linear transformation

21© Eric Xing @ CMU, 2006-2011

PCs, Variance and Least-Squares
The first PC retains the greatest amount of variation in the 
samplep

The kth PC retains the kth greatest fraction of the variation in 
the sample

The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PCvariance in the sample along the kth PC

The least-squares view: PCs are a series of linear least 
squares fits to a sample, each orthogonal to all previous ones 

22© Eric Xing @ CMU, 2006-2011
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How Many PCs?
For n original dimensions, sample covariance matrix is nxn, and has 
up to n eigenvectors. So n PCs.

10

15

20

25

Va
ria

nc
e 

(%
)

Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 

0

5

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t 
lose much

n dimensions in original data 
calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors, based on their eigenvalues
final data set has only p dimensions
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Document

Latent Semantic Indexing

* *

T Λ DT

=

X

Te
rm ...

T 
(m x k)

Λ
(k x k)

D
(k x n)

X 
(m x n)

∑
1=

=
K

k
kkk Tdw
rr λ

This is our 
compressed 
representation of  a 
document

24© Eric Xing @ CMU, 2006-2011



13

Let                      be a square matrix with m linearly 
independent eigenvectors (a “non-defective” matrix)

Recall: Eigen/diagonal decomposition

p g ( )

Theorem: Exists an eigen decomposition

(cf matrix diagonalization theorem)

diagonal

Unique 
for 

distinc
t eigen-
values

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 

25© Eric Xing @ CMU, 2006-2011

Singular Value Decomposition

For an m× n matrix A of rank r there exists a factorization

TVUA Σ=

m×m m×m V is m×n

(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.

ii λσ =

( )rdiag σσ ...1=Σ Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.

26© Eric Xing @ CMU, 2006-2011
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SVD and PCA
The first root is called the prinicipal eigenvalue which has an 
associated orthonormal (uTu = 1) eigenvector u 

Subsequent roots are ordered such that λ1> λ2  >… > λM  with 
rank(D) non-zero values.

Eigenvectors form an orthonormal basis i.e. ui
Tuj = δij 

The eigenvalue decomposition of XXT = UΣUT

where U = [u1, u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 

Similarly the eigenvalue decomposition of XTX = VΣVT

The SVD is closely related to the above X=U Σ1/2 VT

The left eigenvectors U, right eigenvectors V, 

singular values = square root of eigenvalues.

27© Eric Xing @ CMU, 2006-2011

Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

T
kk VUA )0,...,0,,...,(diag 1 σσ=

column notation: sum 
of rank 1 matrices

T
ii

k

i ik vuA ∑ =
=

1
σ

k
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Approximation error
How good (bad) is this approximation?
It’s the best possible measured by the Frobenius norm of theIt s the best possible, measured by the Frobenius norm of the 
error:

1
)(:

min +
=

=−=− kFkF
kXrankX

AAXA σ

where the σi are ordered such that σi ≥ σi+1.
Suggests why Frobenius error drops as k increased.

29© Eric Xing @ CMU, 2006-2011

t ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

U (9x7) = 
0.3996 -0.1037 0.5606 -0.3717 -0.3919 -0.3482 0.1029 
0.4180 -0.0641 0.4878 0.1566 0.5771 0.1981 -0.1094 
0.3464 -0.4422 -0.3997 -0.5142 0.2787 0.0102 -0.2857 
0.1888 0.4615 0.0049 -0.0279 -0.2087 0.4193 -0.6629 
0.3602 0.3776 -0.0914 0.1596 -0.2045 -0.3701 -0.1023 

Example

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9
controllabilit
y 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0
transfer 
function 0 0 0 0 1 1 0 0

0.4075 0.3622 -0.3657 -0.2684 -0.0174 0.2711 0.5676 
0.2750 0.1667 -0.1303 0.4376 0.3844 -0.3066 0.1230 
0.2259 -0.3096 -0.3579 0.3127 -0.2406 -0.3122 -0.2611 
0.2958 -0.4232 0.0277 0.4305 -0.3800 0.5114 0.2010

S (7x7) = 
3.9901 0 0 0 0 0 0 

0 2.2813 0 0 0 0 0 
0 0 1.6705 0 0 0 0 
0 0 0 1.3522 0 0 0 
0 0 0 0 1.1818 0 0 
0 0 0 0 0 0.6623 0 
0 0 0 0 0 0 0.6487

V (7x8) = Tfunction
polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

0.2917 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505 
0.3399 0.4811 0.0649 -0.3760 -0.6959 -0.0421 -0.1462 
0.1889 -0.0351 -0.4582 -0.5788 0.2211 0.4247 0.4346 

-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 
0.6838 -0.1913 -0.1609 0.2535 0.0050 -0.5229 0.3636 
0.4134 0.5716 -0.0566 0.3383 0.4493 0.3198 -0.2839 
0.2176 -0.5151 -0.4369 0.1694 -0.2893 0.3161 -0.5330 
0.2791 -0.2591 0.6442 0.1593 -0.1648 0.5455 0.2998This happens to be a rank-7 matrix

-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT
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31© Eric Xing @ CMU, 2006-2011

What LSI can do
LSI analysis effectively does

Dimensionality reduction
Noise reduction
Exploitation of redundant data
Correlation analysis and Query expansion (with related words)

Some of the individual effects can be achieved with simpler 
techniques (e.g. thesaurus construction). LSI does them together.

LSI handles synonymy well, not so much polysemy

Challenge: SVD is complex to compute (O(n3))
Needs to be updated as a whole as new documents are found/updated, not  an 
online algorithm

32© Eric Xing @ CMU, 2006-2011
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Probabilistic Latent Semantic 
Indexing

Distribution over words
Latent Structure ∑=

l

l),w()w( PPl

)()|w()w|( PPP ll
l =

Inferring latent structure

Words w )w(
)w|(

P
P l =

...)w|( 1 =+nwP
Prediction
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How to Model Semantic?
Q: What is it about?
A: Mainly MT, with syntax, some learningy , y , g

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments

Source
Target
SMT

Parse
Tree
Noun

likelihood
EM

Hidden

MT                    Syntax              Learning

0.6                          0.3                   0.1   

s

Mixing 
Proportion

using BLEU as a metric, the hierarchical 
Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Alignment
Score
BLEU

Noun
Phrase

Grammar
CFG

Hidden
Parameters
Estimation

argMax

Unigram over vocabulary

To
pi

cs

Topic Models
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Words in Contexts
the opposition Labor Party fared even worse,  with a 

predicted 35 seats seven less than last electionpredicted 35 seats,  seven less than last election.

35© Eric Xing @ CMU, 2006-2011

"Words" in Contexts (con'd)

Sivic et al. ICCV 2005
36© Eric Xing @ CMU, 2006-2011
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GENERATIVE PROCESS

TOPIC 1

DOCUMENT 2: river2 stream2 bank2 stream2 bank2

money1 loan1 river2 stream2 loan1 bank2 river2 bank2

bank1 stream2 river2 loan1 bank2 stream2 bank2 money1

loan1 river2 stream2 bank2 stream2 bank2 money1 river2

DOCUMENT 1: money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 money1

stream2 bank1 money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 bank1

money1 stream2

.3

.8

.2

TOPIC 2

loan1 river2 stream2 bank2 stream2 bank2 money1 river2

stream2 loan1 bank2 river2 bank2 money1 bank1 stream2

river2 bank2 stream2 bank2 money1

Mixture 
components

Mixture 
weights

.7
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Topic Models = 
Mixture Membership Models

Generating a document
PrioithfD θ Prio
r

θ 

z 

β

( )
{ } ( )

    

 
 from  ,| Draw -

 from  Draw-
  each wordFor  

prior  thefrom  

:1 nzknn

n

lmultinomiazw
lmultinomiaz

n
Draw

ββ
θ

θ−

w β  
Nd

N 

K 
Which prior to use?
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Latent Dirichlet Allocation
Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:

wnznθα

K

η βk

N
M

( )∑∫ ==
z

w βθβθβθ ddwpzpppp
nznn

N
n  )()(∏)()()( 1
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documents topic

topic documents

LSI versus Topic Model 
(probabilistic LSI)

w
or

ds Χ         =    W        Λ DΤ

w
or

ds

topic

to
pi

c

to
pi

c

documents

LSI

rd
s

=     

documents
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ds

topics
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documents

w
|z)

P( )P(w)
Topic-Mixing is via repeated 

dWx
rr '=

Topic models

w
or =     wo to

p

P(
w P(z)P(w) word labeling
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Inference Tasks

θ

41© Eric Xing @ CMU, 2006-2011

A possible query:

Bayesian inference

?)|( Dθ

Close form solution?
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Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors
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Approximate Inference

Variational Inference

Mean field approximation (Blei et al)
Expectation propagation (Minka et al)
Variational 2nd-order Taylor approximation (Xing)

Markov Chain Monte CarloMarkov Chain Monte Carlo

Gibbs sampling (Griffiths et al)

43© Eric Xing @ CMU, 2006-2011

Collapsed Gibbs sampling 
(Tom Griffiths & Mark Steyvers)

Collapsed Gibbs sampling
Integrate out πg

For variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)
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Gibbs sampling 

Need full conditional distributions for variablesNeed full conditional distributions for variables
Since we only sample z we need β

number of times word w assigned to topic j

number of times topic j used in document d
45© Eric Xing @ CMU, 2006-2011

Gibbs sampling

iteration
1

i wi di zi
1
2
3
4
5
6
7
8
9

10

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

1
1
1
1
1
1
1
1
1
1

2
2
1
2
1
2
2
1
2
1

11
12
.
.
.

50

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

2
2
.
.
.
5

1
1
.
.
.
2

46© Eric Xing @ CMU, 2006-2011



24

Gibbs sampling

iteration
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Gibbs sampling

iteration
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Gibbs sampling

iteration
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Gibbs sampling

iteration
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Gibbs sampling

iteration
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Gibbs sampling

iteration
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Gibbs sampling
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Extension 1: topic evolution?

Nature papers 
from 1900-2000

Research
topics

1900 2000 ?

A. Ahmed and E.P Xing,  A. Ahmed and E.P Xing,  
Submitted 2007Submitted 2007 55© Eric Xing @ CMU, 2006-2011
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Topic Trends

57© Eric Xing @ CMU, 2006-2011

Topic Words over Time
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Extension 2: 
Topic Models for Images

Latent Dirichlet Allocation (LDA)

“beach”

w
N

c z

D

π

Fei-Fei et al. ICCV 200559© Eric Xing @ CMU, 2006-2011

Summary:
Principle of sub-space learning 

Projection method to reduce the number of dimensions
Transfer a set of correlated variables into a new set of possibly uncorrelated variables
Map the data into a space of lower dimensionality
Form of unsupervised learning

Properties
PCA: It can be viewed as a rotation of the existing axes to new positions in the space defined 
by original variables; new axes are orthogonal and represent the directions with maximum 
variability
LDA: it can be viewed as a probabilistic generative model where each word in a doc is 
generated from a doc-specific topic vector defining proportion of memberships from a collectiongenerated from a doc specific topic vector defining proportion of memberships from a collection 
of topic-specific word distributions  

Application: In many settings in pattern recognition and retrieval, we 
have a feature-object matrix.

Dimensionality reduction for each doc/image/user
Topic extraction and summarization of a corpus 
Trend analysis and discovery
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