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What is in the image?
Nodes encode hidden 
information (patch-
id tit )identity).
They receive local 
information from the 
image (brightness, 
color).
Information is 
propagated though the 
graph over its edges.
Edges encode 
‘compatibility’ between 
nodes.

?air or water ?
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Modeling Go
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Ising Model
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Naturally arises in image processing, lattice physics, etc.
Each node may represent a single "pixel", or an atom

The states of adjacent or nearby nodes are "coupled" due to pattern continuity or 
electro-magnetic force, etc.
Most likely joint-configurations usually correspond to a  "low-energy" state  
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Two types of GMs

p )

Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical
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variables (Markov Random Field or Undirected Graphical 
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P-maps
Defn: A DAG G is a perfect map (P-map) for a distribution P if 
I(P)=I(G).( ) ( )
Thm: not every distribution has a perfect map as DAG.

Pf by counterexample. Suppose we have a model where
A⊥C | {B,D}, and B⊥D | {A,C}. 
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B⊥D | A,  BN2 wrongly says B⊥D.

A AA

CC

DD BB

C AA

DD BB

BN1BN1 BN2BN2

A

CC

DD BB

MRFMRF
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Undirected graphical models 
(UGM)

X1 X4

X2

X3

X5

Pairwise (non-causal) relationships
Can write down model, and score specific configurations of 
the graph, but no explicit way to generate samples
Contingency constrains on node configurations
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Representation
Defn: an undirected graphical model represents a distribution 
P(X1 ,…,Xn) defined by an undirected graph H, and a set of ( 1 , , n) y g p ,
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

∏
∈

=
Cc

ccn Z
xxP )(),,( xψ1

1 K

∑ ∏=
C

ccZ )(xψ

Also known as Markov Random Fields, Markov networks …
The potential function can be understood as an contingency 
function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   

∈nxx Cc,,K1
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Global Markov Independencies
Let H be an undirected graph:

B separates A and C if every path from a node in A to a node 
in C passes through a node in B:
A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

{ });(sep:)(I BCABCAH H⊥=
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Local Markov independencies 
For each node Xi ∈ V, there is unique Markov blanket of Xi, 
denoted MBXi, which is the set of neighbors of Xi in the graph Xi, g i g p
(those that share an edge with Xi)

Defn: 
The local Markov independencies associated with H is:

Iℓ(H): {Xi ⊥ V – {Xi } – MBXi | MBXi : ∀ i),

In other words, Xi is independent of the rest of the nodes in the graph given 
its immediate neighbors
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Structure: an undirected 
graph

Summary: Conditional Independence 
Semantics in an MRF

graph

• Meaning: a node is 
conditionally independent of 
every other node in the 
network given its Directed 
neighbors

• Local contingency functions 

X

Y1 Y2

g y
(potentials) and the cliques in 
the graph completely 
determine the joint dist. 

• Give correlations between 
variables, but no explicit way 
to generate samples
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Perfect maps
Defn: A Markov network H is a perfect map for P if for any X; 
Y;Z we have that;

Thm: not every distribution has a perfect map as UGM.
Pf by counterexample. No undirected network can capture all and only the 
independencies encoded in a v-structure X Z Y .

( )YZXPYZXH |);(sep ⊥=⇔ |
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Quantitative Specification: 
Cliques

For G={V,E}, a complete subgraph (clique) is a subgraph 
G'={V'⊆V,E'⊆E} such that nodes in V' are fully interconnected{ ⊆ , ⊆ } y
A (maximal) clique is a complete subgraph s.t. any superset 
V"⊃V' is not complete.
A sub-clique is a not-necessarily-maximal clique.

A

Example: 
max-cliques = {A,B,D}, {B,C,D}, 
sub-cliques = {A,B}, {C,D}, … all edges and singletons 

CC

DD BB
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Interpretation of Clique Potentials

YXX ZZ

The model implies X⊥Z|Y. This independence statement 
implies (by definition) that the joint must factorize as:

We can write this as:                                            , but

)|()|()(),,( yzpyxpypzyxp =

),()|(),,(
)|(),(),,(

yzpyxpzyxp
yzpyxpzyxp

=

=

cannot have all potentials be marginals
cannot have all potentials be conditionals

The positive clique potentials can only be thought of as 
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.
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Hammersley-Clifford Theorem
If arbitrary potentials are utilized in the following product formula for 
probabilities, 

then the family of probability distributions obtained is exactly that set 
which respects the qualitative specification (the conditional 

∏
∈

=
Cc

ccn Z
xxP )(),,( xψ1

1 K

∑ ∏
∈

=
nxx Cc

ccZ
,,

)(
K1

xψ

independence relations) described earlier 

Thm : Let P be a positive distribution over V, and H a Markov 
network graph over V. If H is an I-map for P, then P is a Gibbs 
distribution over H.
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Example: 
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Exponential Form
Constraining clique potentials to be positive could be inconvenient (e.g., 
the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential ψc(xc)  in an unconstrained 
form using a real-value "energy" function φc(xc):

For convenience, we will call φc(xc) a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

{ })(exp)( cccc xx φψ −=

{ })(exp)(exp)( xxx Hp cc −=⎬
⎫

⎨
⎧
−= ∑ 11 φ

where the sum in the exponent is called the "free energy":

In physics, this is called the "Boltzmann distribution".
In statistics, this is called a log-linear model.

{ })(p)(p)(
ZZ

p
Cc

cc
⎭
⎬

⎩
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∈

φ

∑
∈

=
Cc

ccH )()( xx φ

17© Eric Xing @ CMU, 2006-2011

Example: Ising models
Nodes are arranged in a regular topology (often a regular 
packing grid) and connected only to their geometric p g g ) y g
neighbors.
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Same as sparse Boltzmann machine, where θij≠0 iff i,j are 
neighbors.

e.g., nodes are pixels, potential function encourages nearby pixels to have similar 
intensities.

Potts model: multi-state Ising model.
18© Eric Xing @ CMU, 2006-2011
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Example: Conditional Random 
Fields

If the graph G = (V, E) of Y is a tree, the conditional distribution over 
the label sequence Y = y, given X = x, by the Hammersley Clifford 
theorem of random fields is:

─ x is a data sequence
─ y is a label sequence 
─ v is a vertex from vertex set V = set of label random variables
─ e is an edge from edge set E over V

(y | x) exp ( , y | , x) ( , y | , x)θ λ µ
∈ ∈

⎛ ⎞
∝ +⎜ ⎟

⎝ ⎠
∑ ∑k k e k k v

e E,k v V ,k
p f e g v

Y1 Y2 Y5

…

X1 … Xn

─ e is an edge from edge set E over V
─ fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a Boolean edge 

feature
─ k is the number of features
─ are parameters to be estimated
─ y|e is the set of components of y defined by edge e
─ y|v is the set of components of y defined by vertex v

1 2 1 2( , , , ; , , , ); andn n k kθ λ λ λ µ µ µ λ µ= L L

19© Eric Xing @ CMU, 2006-2011

Inference and Learning
Inference:

Compute the likelihood of observed data
Compute the marginal distribution            over a particular subset           of 
nodes
Compute the conditional distribution                  for disjoint subsets A and B
Compute a mode of the density

Learning:
Parameter estimation
St t ti tiStructure estimation

20© Eric Xing @ CMU, 2006-2011
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MLE for undirected graphical 
models

For directed graphical models, the log-likelihood decomposes 
into a sum of terms, one per family (node plus parents)., p y ( p p )
For undirected graphical models, the log-likelihood does not 
decompose, because the normalization constant Z is a 
function of all the parameters

∏
∈

=
Cc

ccn Z
xxP )(),,( xψ1

1 K ∑ ∏
∈

=
nxx Cc

ccZ
,,

)(
K1

xψ

In general, we will need to do inference (i.e., marginalization) 
to learn parameters for undirected models, even in the fully 
observed case.
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Inference Problems
Compute the likelihood of observed data
Compute the marginal distribution            over a particular subset           
of nodes
Compute the conditional distribution                  for disjoint subsets A
and B
Compute a mode of the density

Methods we have

Brute force Elimination
Message Passing
(Forward-backward , Max-product 

/BP, Junction Tree)

Sharing intermediate termsIndividual computations independent

22© Eric Xing @ CMU, 2006-2011
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Message passing for trees

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow f
up to i, which is a function of xi:

This is reminiscent of a message sent 
from j to i.

f

i

j

mij(xi) represents a "belief" of xi from xj!

j

k l

23© Eric Xing @ CMU, 2006-2011

Junction Tree Revisited
General Algorithm on Graphs with Cycles

Steps: => Triangularization => Construct JTs

=> Message Passing on Clique Trees

B CS

> Message Passing on Clique Trees

24© Eric Xing @ CMU, 2006-2011
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Why Approximate Inference?
Why can’t we just run junction tree on this graph?
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If NxN grid, tree width at least N
N can be a huge number(~1000s of pixels)

If N~O(1000), we have a clique with 2100 entries
25© Eric Xing @ CMU, 2006-2011

kk

Solution 1: Belief Propagation on 
loopy graphs

i
k k

k

i
j k

k

Mki

BP Message update RulesBP Message-update Rules

May not converge or converge to a wrong solution

∏∑ →→ ∝
k

iik
x

iijiijjji xMxxxxM
i

)()(),()( ψψ

Compatibilities (interactions)
external evidence

∏∝
k

kkiiii xMxxb )()()( ψ
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kk

Recall BP on trees

i
k k

k

i
j k

k

Mki

BP Message update Rules
∏∑ →→ ∝

k
iik

x
iijiijjji xMxxxxM

i

)()(),()( ψψ

Compatibilities (interactions)
external evidence

∏∝
k

kkiiii xMxxb )()()( ψ

BP Message-update Rules

BP on trees always converges to exact marginals

27© Eric Xing @ CMU, 2006-2011

Loopy Belief Propagation
If BP is used on graphs with loops, messages may circulate 
indefinitelyy

Empirically, a good approximation is still achievable
Stop after fixed # of iterations
Stop when no significant change in beliefs
If solution is not oscillatory but converges, it usually is a good approximation

28© Eric Xing @ CMU, 2006-2011
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Approximate p(X) by fully factorized q(X)=Πiqi(Xi)

Solution 2: The naive mean field 
approximation

mean field equation:

exp)(
j

iqjiijiiii AXXXXq
i

jN ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++= ∑
∈

θθ 0
jqjX

Xi

For Boltzmann distribution p(X)=exp{∑i < j qijXiXj+qioXi}/Z :

Xi

}):{|( iji jXXp
jq

N∈〉〈= }:{ ij jX
jq

N∈〉〈

ℑxj〉qj resembles a “message” sent from node j to i

{〈xj〉qj : j ∈ Ni} forms the “mean field” applied to Xi from its neighborhood}:{ iqj jX
j

N∈〉〈
jqjX
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Approximate p(X) by fully factorized q(X)=Πiqi(Xi)

Recall Gibbs sampling

Gibbs predictive distribution:

⎪⎭
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++= ∑
∈

−
ij

ijiijiiii AxXXxXp
N

θθ 0exp)|( jx
Xi

For Boltzmann distribution p(X)=exp{∑i < j qijXiXj+qioXi}/Z :

Xi

}):{|( iji jxXp N∈= jx
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Supplemental reading
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Theoretical Foundation of Approx 
Inference

Let us call the actual distribution P

∏ XfZXP )(/1)(

We wish to find a distribution Q such that Q is a “good” 
approximation to P
Recall the definition of KL-divergence

∏
∈

=
Ff

aa
a

XfZXP )(/1)(

)
)(
)(log()()||(

2

1
121 XQ

XQXQQQKL
X
∑=

KL(Q1||Q2)>=0
KL(Q1||Q2)=0 iff Q1=Q2

But, KL(Q1||Q2) ≠ KL(Q2||Q1
)

)(2 XQX
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The Objective

We will call                 the “Energy Functional” ,  or, the Gibbs Free 
Energy

ZXfEXHPQKL
Ff

aaQQ
a

log)(log)()||( +−−= ∑
∈

),( QPF

),( QPF
Energy

=?

F(P,Q) >= F(P,P)

),( PPF
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The Energy Functional
Let us look at the functional

can be computed if we have marginals over each  fa

is harder! Requires summation over all 
possible values
Computing F, is therefore hard in general.

∑
∈

−−=
Ff

aaQQ
a

XfEXHQPF )(log)(),(

∑
∈Ff

aaQ
a

XfE )(log

∑−=
X

Q XQXQH )(log)(

p g g
Approach: Approximate with easy to compute ),( QPF

∧

),( QPF
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Tree Energy Functionals
Consider a tree-structured distribution

The probability can be written as: ( ) ( ) id

i
ii

a
aa xbbb −∏∏= 1xx)(

1X 2X 3X 4X

5X 6X 7X 8X

involves summation over edges and vertices and is therefore easy to compute

( ) ( ) ( ) ( ) ( )∑∑∑∑ −+−=
ia

iiii
i

i
a

aaaatree bbdbbH
xx

xxxx lnln 1

( ) ( )
( ) ( ) ( ) ( )∑∑∑∑ −+=

ia

iiii
i

i
a aa

aa
aaTree bbd

f
bbF

xx
xx

x
xx lnln 1

73625178672312 .. FFFFFFFFFF −−−−−−++++=
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Bethe Approximation to Gibbs 
Free Energy

For a general graph, choose BethaFQPF =
∧

),(

( ) ( ) ( ) ( ) ( )∑∑∑∑ −+−= iiiiiB h bbdbbH xxxx lnln 1

Called “Bethe approximation” after the physicist Hans Bethe

1X 2X 3X 4X

( ) ( )
( ) ( ) ( ) ( ) ( ) bethaaaiiii

i
i

a aa

aa
aaBethe Hfbbd

f
bbF

ia

−−=−+= ∑∑∑∑ xxx
x
xx

xx

lnln 1

( ) ( ) ( ) ( ) ( )∑∑∑∑ +
ia

iiii
i

i
a

aaaaBethe bbdbbH
xx

xxxx lnln 1

Equal to the exact Gibbs free energy when the factor graph is a tree
In general, HBethe is not the same as the H of a tree

5X 6X 7X 8X

8625178672312 22 FFFFFFFFFFbethe −−−−−++++= ....
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Bethe Approximation

Pros:
Easy to compute since entropy term involves sum over pairwise andEasy to compute, since entropy term involves sum over pairwise and 
single variables

Cons:
may or may not be well connected to

It could, in general, be greater, equal or less than  

Optimize each b(xa)'s. 
For discrete belief constrained opt with Lagrangian multiplier

betheFQPF =
∧

),( ),( QPF

),( QPF

For discrete belief, constrained opt. with Lagrangian multiplier 
For continuous belief, not yet a general formula
Not always converge
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Constrained Minimization of the 
Bethe Free Energy
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∂L ⎞
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∂
∂
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∂
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Using ,)()(
\
∑=→

X
aaiia Xbxb we get

Bethe = 
BP Message-update Rules

\ ia xX

∑ ∏ ∏
∈ ∈

→→ =
ia xX iaNj ajNb

jjbaaiia xmXfxm
\ \)( \)(

)()()(

( A sum product algorithm )

ai
∑

i a
=
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The Energy Functional
Let us look at the functional

can be computed if we have marginals over each  fa

is harder! Requires summation over all 
possible values
Computing F, is therefore hard in general.

∑
∈

−−=
Ff

aaQQ
a

XfEXHQPF )(log)(),(

∑
∈Ff

aaQ
a

XfE )(log

∑−=
X

Q XQXQH )(log)(

p g g
Approach: Approximate with easy to compute ),( QPF

∧

),( QPF
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Mean field approx. to Gibbs free 
energy

Given a disjoint clustering, {C1, … , CI}, of all variables
Let )()( qq XX ∏=
Mean-field free energy

),()( i
i

iqq CXX ∏=

( ) ( ) ( )∑∑∑∑∏ +=
i

CiCi
i

C
i

Ci
iC

iii

iC

i
qqEqG

xx
xxxx ln)(MF

( ) ( ) ( ) ( ) ( )∑∑∑∑∑∑ ++=
< i x

ii
i

i
x

i
ji

ji
xx

ji
iiji

xqxqxxqxxxqxqG ln)()(       e.g., MF φφ (naïve mean field)

Will never equal to the exact Gibbs free energy no matter what clustering is used, 
but it does always define a lower bound of the likelihood 

Optimize each qi(xc)'s. 
Variational calculus …
Do inference in each qi(xc) using any tractable algorithm

41© Eric Xing @ CMU, 2006-2011

Naïve Mean Field
Fully factorized variational distribution

42© Eric Xing @ CMU, 2006-2011



22

Naïve Mean Field for Ising Model
Optimization Problem

Update Rule

resembles “message” sent from node      to   

forms the “mean field” applied to     from its 
neighborhood

43© Eric Xing @ CMU, 2006-2011

Structured Mean Field
Mean field theory is general to any tractable sub-graphs
Naïve mean field is based on the fully unconnected sub-graphNaïve mean field is based on the fully unconnected sub-graph

Variants based on structured sub-graphs can be derived

44© Eric Xing @ CMU, 2006-2011
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Generalized MF approximation to 
Ising models [Xing et al. 2003]

Cluster marginal of a square block C :Cluster marginal of a square block Ck:

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
++∝ ∑ ∑∑

∈ ∈
∈

∈∈k
kMBCk

kMBjkCi kC
k

k
Cji

Xqjiij
Ci

iijiijC XXXXXXq
,

)(

'
,, '

exp)( θθθ 0

Virtually a reparameterized Ising model of small size.
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a general, iterative message passing algorithm 

Cluster-based MF (e.g., GMF)

clustering completely defines approximation
preserves dependencies 
flexible performance/cost trade-off
clustering automatable 

recovers model-specific structured VI algorithms, including:
fHMM LDAfHMM, LDA 
variational Bayesian learning algorithms

easily provides new structured VI approximations to complex 
models

46© Eric Xing @ CMU, 2006-2011
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Structured Variational Inference

y12 y13y11 y1N...

S2 S3S1 SN... 

y12 y13y11 y1N...

S2 S3S1 SN... 

Currently for each new model we have to 
derive the variational update equations 

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

fHMM Mean field approx. Structured variational approx.

⇒⇒

p q
write application-specific code to find the solution

Each can be time consuming and error prone

Can we build a general-purpose inference engine which 
automates these procedures?

47© Eric Xing @ CMU, 2006-2011

Summary I
Undirected graphical models capture “relatedness”, 
“coupling”, “co-occurrence”, “synergism”, etc. between entitiesp g , , y g ,
Local and global independence properties identifiable via 
graph separation criteria
Defined on clique potentials
Generally intractable to compute likelihood due to presence of 
“partition function”

Therefore not only inference, but also likelihood-based learning is difficult in y , g
general

Can be used to define either joint or conditional distributions
Important special cases:

Gaussian graphical models
Ising models
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Summary II
Exact inference methods are limited to tree-structured graphs

Junction Tree methods is exponentially expensive to the tree-
width

Message Passing methods can be applied for loopy graphs, 
but lack of analysis!

Mean-field is convergent, but can have local optimal

Where do these two algorithm come from? Do they make 
sense?
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