Machine Learning

10-701/15-781, Fall 2011
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Approximate Inference ®
o Readihg: Chap. 8, C.B book
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What is in the image? o

e Nodes encode hidden
information (patch-
identity).

e They receive local
information from the
image (brightness,
color).

e [Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.
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This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.
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sing Mode :

p(X)=;exp{Zajxixj+Zeioxi}

i<j

e Naturally arises in image processing, lattice physics, etc.

e Each node may represent a single "pixel", or an atom

e The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

e Most likely joint-configurations usually correspond to a "low-energy" state

© Eric Xing @ CMU, 2006-2011 4




Two types of GMs

I
e Directed edges give causality relationships (Bayesian

Network or Directed Graphical Model):

P(Xl* XZ* X3* X4* XS* XG* X7* XB)

= P(Xy) P(Xg) P(X3] X;) P(Xy] X5) P(Xs| X5)
P(Xel X3 %) POGI Xg) P(Xgl X5, Xe)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical
model):

P(X1, Xa, Xg, Xgy X, Xg, X7, Xg)

= UZ exp{E(X))+E(X)+E(X;, X)) +E(X,, X2)+E(Xs, X;)
+E(Xg, X3, X)+E(X;7, Xe)+E(Xg, X5, Xo)}
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P-maps

e Defn: ADAG Gis a perfect map (P-map) for a distribution Pif
IA=16).
e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where
ALC|{B D}, and BLD|{A,¢}.
This cannot be represented by any Bayes net.

e e.g., BN1wrongly says 81D | A, BN2 wrongly says BLD.

BN1 BN2 MRF
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Undirected graphical models
(UGM)

e Pairwise (non-causal) relationships

e Can write down model, and score specific configurations of
the graph, but no explicit way to generate samples

e Contingency constrains on node configurations
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Representation

e Defn: an undirected graphical model represents a distribution
P(X,,....X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,

s.t. 1 \
P(Xla--- ’ Xn) = 2Hl//c (Xc)
ceC
where Z is known as the partition function:

Z=> []w.(x)

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.
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Global Markov Independencies

e Let H be an undirected graph: )
e ﬁ\ TS

e Bseparates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property

if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: I(H)= ALC\B :sepy, (AC B)}
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Local Markov independencies .

e Foreach node X € V, there is unique Markov blanket of X,
denoted MB,;, which is the set of neighbors of X; in the graph
(those that share an edge with X;)

e Defn:
The local Markov independencies associated with H is:

I(H): {X; LV —{X;} = MBy; | MBy; : ¥V i),

In other words, X; is independent of the rest of the nodes in the graph given
its immediate neighbors
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Summary: Conditional Independence
Semantics in an MRF

Structure: an undirected
graph

* Meaning: anode is
conditionally independent of
every other node in the
network given its Directed
neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

» Give correlations between
variables, but no explicit way
to generate samples
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Perfect maps

e Defn: A Markov network His a perfect map for Pif for any X:
Y:Zwe have that

sep, (X;ZY) o P=(XLZ|Y)

e Thm: not every distribution has a perfect map as UGM.

e Pf by counterexample. No undirected network can capture all and only the
independencies encoded in a v-structure X> Z< Y.

D U p
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Quantitative Specification:
Cliques

I
e For G={V,E}, a complete subgraph (clique) is a subgraph

G'={V'cV,E'cE} such that nodes in V' are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
"SV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

e Example:
e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons
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Interpretation of Clique Potentials | :¢

C—0—®

e The model implies XLZ] Y. This independence statement
implies (by definition) that the joint must factorize as:

px,y.z)=p(y)p(x1y)p(z|y)

e We can write this as:  PX:2)=px:p(Z1y)  put
plx.y,z)=p(x|y)p(z,y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility", "goodness" or "happiness" functions
over their variables, but not as probability distributions.
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Hammersley-Clifford Theorem

I
e |f arbitrary potentials are utilized in the following product formula for

probabilities,
1
P(Xl"“7xn) :7HWC(XC)
Z ceC
Z= []w.(x)
Xpy-.0 Xy CEC

then the family of probability distributions obtained is exactly that set
which respects the qualitative specification (the conditional
independence relations) described earlier

e Thm : Let P be a positive distribution over V, and H a Markov
network graph over V. If His an I-map for P, then P is a Gibbs
distribution over H.
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Example:

P(X1, Xz, X3, X4)
1
= 2‘/@ (X124) ¥ ¥ (X234)
XW1o (Xy2 )W 1a (K12 )W 23 (X23)W 24 (X24 )W 34 (X34)
xyy (X)) (X )3 (X3)w 4 (X4)

W (Xi24) X W (X234)
Z= Z $ W12 (X2 )W1a (X4 )W 23 (X3 )W 24 (X24 )W 34 (X34)
X1:%2.:X3,X4 Xl//l(xl)‘//z (XZ)V/3 (X3)l/l4 (X4)
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Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢,(x,):

Ve (Xc) = exp{— ¢c (Xc)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture

209 Lexpl- T x){ = F el HO)

ceC

where the sum in the exponent is called the "free energy":

HO) =2 ¢ (x)

ceC

e In physics, this is called the "Boltzmann distribution".
e [n statistics, this is called a log-linear model.

o000

0000

coee
Example: Ising models °e

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geometric
neighbors.

p(Xx) _;exp{ Zeijxixj +Zgioxi}

ijeN,

e Same as sparse Boltzmann machine, where H,J;tO iff 7/ are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to have similar
intensities.

e Potts model: multi-state Ising model.
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Example: Conditional Random
Fields

e |[fthe graph G = (V, E) of Y is a tree, the conditional distribution over
the label sequence Y =y, given X = x, by the Hammersley Clifford
theorem of random fields is:

Po(yIX)cexpl DAYl X)+ D #9(V,y],X)

ecEk veV k
- xis a data sequence OmO (»
— yis a label sequence \. g
- vis avertex from vertex set V = set of label random variables X X,
- eis an edge from edge set E over V
- f,and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature
— kis the number of features
- 0= Ay Al oo 14,)i A and g, are parameters to be estimated
- yl.is the set of components of y defined by edge e
- yl, is the set of components of y defined by vertex v
© Eric Xing @ CMU, 2006-2011 19
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e Inference:
e  Compute the likelihood of observed data

e  Compute the marginal distribution P(xa)over a particular subset A C Vof
nodes
e  Compute the conditional distribution p(x.a|xs) for disjoint subsets A and B
e  Compute a mode of the density i = arg max p(x)
J'€.1.’"
e Learning:

° Parameter estimation
° Structure estimation

© Eric Xing @ CMU, 2006-2011 20
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MLE for undirected graphical
models

|
e For directed graphical models, the log-likelihood decomposes

into a sum of terms, one per family (node plus parents).

e For undirected graphical models, the log-likelihood does not
decompose, because the normalization constant Zis a
function of all the parameters

P(xl,...,xn)=%Hy/C(xc) Z= 3 Tv.(x)

ceC seoa Xy CeC

e In general, we will need to do inference (i.e., marginalization)
to learn parameters for undirected models, even in the fully
observed case.

o000

0000

HH
Inference Problems °e

e Compute the likelihood of observed data

e Compute the marginal distribution p(x.4) over a particular subset
ofnodes A CV

e Compute the conditional distribution p(zalrs) for disjoint subsets A
and B

e Compute a mode of the density & = arg 111;{1;( p(x)
.I'Er L

e Methods we have

Message Passing

(Forward-backward , Max-product
/BP, Junction Tree)

[ Brute force ] [ Elimination ] I:>

Individual computations independent Sharing intermediate terms

© Eric Xing @ CMU, 2006-2011 22
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Message passing for trees

Let m;(x;) denote the factor resulting
from eliminating variables from bellow
up to i, which is a function of x;:

mjilxi) Z(-.'lﬁ.r,]l'[.J'...J'.] 1_[ nu,t.r,])
Ty REN[HI

This is reminiscent of a message sent
from jtoi.

plxy) oc(ay) H megp(zy)

eeN(f)

m;(x;) represents a "belief" of x; from x;!
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Junction Tree Revisited

e General Algorithm on Graphs with Cycles

e Steps: => Triangularization => Construct JTs

=> Message Passing on Clique Trees

os(xs) & Y on(en) “ 0
TR\S S °
) )

bs(xs)
ds(xs)

oc(xe) +— dclxe)
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Why Approximate Inference?

e Why can’t we just run junction tree on this graph?

1
p(X) :ZeXp{Zginixj +Zeioxi}
i<j i

e If NxN grid, tree width at least N

e N can be a huge number(~1000s of pixels)

e If N~O(1000), we have a clique with 219 entries
© Eric Xing @ CMU, 2006-2011 25

Solution 1: Belief Propagation on
loopy graphs

k Kk

|

| O—@ k  k@—@—@K

k

k
[ _ o 0
e BP Message-update Rules

Miaj(xj)mzl//ij(xiiXj)Wi(xi)HMkai(Xi) b|(xi)°<:‘//|(xi)HMk(Xk)
% K K

1 lexternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Recall BP on trees c
k Kk |
Mki l
i
| ——@ k  «K@—@—0X
|
) ® o o
e BP Message-update Rules
M. (%) < Z‘/’u (%, XJ)V/.(Xi)H M, (%) b, (%;) oc ‘//i(Xi)H M, (%)
X; k k
1. lexternal evidence
Compatibilities (interactions)
e BP on trees always converges to exact marginals
© Eric Xing @ CMU, 2006-2011 27
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Loopy Belief Propagation :
e If BP is used on graphs with loops, messages may circulate
indefinitely
e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
e If solution is not oscillatory but converges, it usually is a good approximation
© Eric Xing @ CMU, 2006-2011 28
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Solution 2: The naive mean field
approximation o

e Approximate p(X) by fully factorized q(X)=IT;q;(X;)
e For Boltzmann distribution p(X)=exp{2; - ; 4;XiX;j+0;ocX}/Z :

mean field equation:

ezt . e

JEN;

=X X)), i D) CD/ b

= <Xj>q resembles a “message” sent from node jto i
i

. {(Xj)qj tjem} forms the “mean field” applied to X; from its neighborhood

o000

0000

HH
Recall Gibbs sampling °e

e Approximate p(X) by fully factorized q(X)=IT;q;(X;)

e For Boltzmann distribution p(X)=exp{X; - ; 4;XiX;+0;oX}/Z :
R

O-®-0O
= p(X, {x, 1 j e VD) Q/ \O

Gibbs predictive distribution:

JEN;

pX; |1 x;)= exp{ﬁ,-oX,- + 2. 0;Xx, +A

© Eric Xing @ CMU, 2006-2011 30
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Supplemental reading :

. . [ X X ]
Theoretical Foundation of Approx | 3s::
Inference -

e Let us call the actual distribution P
P(X)=1/Z]] f.(X,)
faeF
e We wish to find a distribution Q such that Q is a “good”
approximation to P
e Recall the definition of KL-divergence
Q.(X)
KL(Q, = L (X) log(=t—=
(Q11Q,) ;Q (X) g(Qz(X))
o KL(Q]|Qy)>=0
o KL(Q]|Q,)=0iff Q,;=Q,
o But, KL(Q]|Q,) = KL(Q,IIQ,)
© Eric Xing @ CMU, 2006-2011 32
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The Objective 5
[}
KL(Q[IP)=—Hq(X)—= D E, log f,(X,){+logZ
faeF
F(P,Q)
e We will call F(P,Q) the “Energy Functional”, or, the Gibbs Free
Energy
e F(P,P)=2
e F(P,Q)>=F(P,P)
© Eric Xing @ CMU, 2006-2011 33
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The Energy Functional :
e Let us look at the functional
F(PrQ) = _HQ(X)_ ZEQ IOg fa(xa)
faeF
e D Eylogf,(X,) can be computed if we have marginals over each f,
faeF
e Ho=-2>"Q(X)l0gQ(X) is harder! Requires summation over all
X
possible values
e Computing F, is therefore hard in general.
e Approach: Approximate F(P,Q) with easy to compute F(P,Q)
© Eric Xing @ CMU, 2006-2011 34
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Tree Energy Functionals s
e Considera tree structured distribution
e The probability can be written as: b(x) = Hb (x LT (%)™
® Hp- ZZb )b (x,)+ X .—IZb Jinb,(x,)
* F. ZZb (x ) +Z(1 d)Zb )Inb,(x
= F12+F23+"+F67+F78 -F-K-F-F-K-F
e involves summation over edges and vertices and is therefore easy to compute
© Eric Xing @ CMU, 2006-2011 35
°
Bethe Approximation to Gibbs
eo0o0
o0
Free Energy :
e Fora general graph, choose F(P,Q) = Fyy,
Hgee = ZZb 2)Inb, (x Z .—IZb )inb(x
FBelhe:zzba(xa)ln a a +Z 1 d )zb Inb <fa(xa)>_Hbetha
e Called “Bethe approximation” after the physicist Hans Bethe
Foee = Fio + Fo3 +..+ Fo; + Frg —F - —2F, -2F,..—
e Equal to the exact Gibbs free energy when the factor graph is a tree
e In general, Hggy, is N0t the same as the H of a tree
© Eric Xing @ CMU, 2006-2011 36
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Bethe Approximation

I
e Pros:

e Easy to compute, since entropy term involves sum over pairwise and
single variables

e Cons:
o IE(P,Q) = Fne may or may not be well connected to  F(P,Q)
e ltcould, in general, be greater, equal or less than F(P,Q)

e Optimize each H(x,)'s.
e For discrete belief, constrained opt. with Lagrangian multiplier
e For continuous belief, not yet a general formula
e Not always converge

© Eric Xing @ CMU, 2006-2011 37

Constrained Minimization of the
Bethe Free Energy '

L = Foee + ZVi{Z b, (x;) -1}

53> zzai(xo{zba(xa)—bi(xi)}

a ieN(a) x; X \X

oL 1 \
ab, (x;) =0 = by (%) oc exp(m aeNz(i);tai (x; )J
oL
ob, (X,) N —> ba(Xa)ocexp(— Ea(Xa)+iE%“a),1ai(Xi)j

© Eric Xing @ CMU, 2006-2011 38
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(X X J
Bethe = selt
BP Message-update Rules '
Usingb, ,;(x;)= D b,(X,), we get
X, \x;
ma—>i(Xi): Z fa(xa) H Hmbaj(xj)
X \X; jeN(a)\i beN(j)\a
(A sum product algorithm )
i, _a
[ X X ]
0000
s
The Energy Functional -

e Let uslook at the functional

F(PrQ) :_HQ(X)_ ZEQ IOg fa(xa)

D Eplog f,(X,) can be computed if we have marginals over each f,
faeF

e Ho=-2Q(X)logQ(X) is harder! Requires summation over all
possiblxe values

e Computing F, is therefore hard in general.

e Approach: Approximate F(P,Q) with easy to compute lé(P,Q)

© Eric Xing @ CMU, 2006-2011 40
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Mean field approx. to Gibbs free
energy

e Given a disjoint clustering, {C,, ... , C}, of all variables

o Lot a(X) = Ta (X)),

¢ Mean-field free energy

Gyr = ZZHqu (Xc, )E(Xc, )+ ZZQi (Xc, )In g (Xc, )

ioxg i i Xc

ed. Gy =2 2 a(x)alx, Boxx,) + 33 alx Wx)+ Y S ax)Ina(x)  (naive mean fieid)
i<j xX; iox [
e Wil never equal to the exact Gibbs free energy no matter what clustering is used,
but it does always define a lower bound of the likelihood
e Optimize each g;(x,)'s.
e Variational calculus ...
e Do inference in each g;(x,) using any tractable algorithm

o000
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coee
Naive Mean Field °e

e Fully factorized variational distribution

seV
O 00 0O
0O 0000
—» 00000
O 00 OO
O 00 OO
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Naive Mean Field for Ising Model

e Optimization Problem

max { Z Ospts + Z Ostprsptr + Z H_‘(ﬂx]}
sV

[0, 1]™
HE0.1] (s.0)EE sEV

e Update Rule

Jls U(I()_Q + Z (JS;;;,)

tEN(s)
ey = p(X; =1) =E,[X,] resembles “message” sent from node ¢ to s

o {E,[X;].t € N(s)} forms the “mean field” applied to s from its
neighborhood

o000

0000

HH
Structured Mean Field °e

e Mean field theory is general to any tractable sub-graphs
e Naive mean field is based on the fully unconnected sub-graph

e Variants based on structured sub-graphs can be derived

O 00 0O
0O 0000
—p O O O O O
O 00 OO
O 00 OO
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Generalized MF approximation to | 32::
Ising models [xing et al. 2003] ot

Cluster marginal of a square block C,:

A(Xc,)ocexpy D, 6, XX+ D X+ 2, eijxi<xi>q(>< )
i,jeCy ieCy iecl;,hjﬁzrgsk, Ck'

Virtually a reparameterized Ising model of small size.

Cluster-based MF (e.g., GMF) s

e a general, iterative message passing algorithm

e clustering completely defines approximation

e preserves dependencies
e flexible performance/cost trade-off
e clustering automatable
e recovers model-specific structured VI algorithms, including:
o fHMM, LDA

e variational Bayesian learning algorithms

e ceasily provides new structured VI approximations to complex
models

© Eric Xing @ CMU, 2006-2011 46
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Structured Variational Inference

(1]

® 6 &) (D G
® ® @--- G & &
® ®

e Currently for each new model we have to
e  derive the variational update equations
e write application-specific code to find the solution

e Each can be time consuming and error prone

e Can we build a general-purpose inference engine which
automates these procedures?

© Eric Xing @ CMU, 2006-2011 47

Mean field approx. Structured variational approx.

Summary |

e Undirected graphical models capture “relatedness”,

“coupling”, “co-occurrence”, “synergism”, etc. between entities

e Local and global independence properties identifiable via
graph separation criteria

e Defined on clique potentials

e Generally intractable to compute likelihood due to presence of
“partition function”

e Therefore not only inference, but also likelihood-based learning is difficult in
general

e Can be used to define either joint or conditional distributions

e Important special cases:
e Gaussian graphical models
e [sing models

© Eric Xing @ CMU, 2006-2011 48
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Summary Il

|
e Exact inference methods are limited to tree-structured graphs

e Junction Tree methods is exponentially expensive to the tree-
width

e Message Passing methods can be applied for loopy graphs,
but lack of analysis!

e Mean-field is convergent, but can have local optimal

e Where do these two algorithm come from? Do they make
sense?
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