Machine Learning

10-701/15-781, Fall 2011
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Inference and Learning 0000
_ 0000
For Bayesian Networks ::0
®
Reading: Chap. 8, C.B book
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Recap of BN Representation

e Joint probability dist. on multiple variables:

P(Xl,XZ,X3,X4,X5,X5)
= P(XIP(X, | X)P(Xg | X1 X)P(Xy | Xy Xg, X3)P(Xg [ Xy Xp, Xy X)P(Xg | Xyu Xy, Xy, X0 X5)
e If Xi's are independent: (P(X;|')= P(X;))
P(Xl,Xz,X3,X4,X5,X5)
:P(X1)P(Xz)P(Xa)P(XA)P(Xs)P(Xe):HP(Xi)

e If X's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,

(%] Xy)
&pb

P(Xl' XZ' XS' X4' XS' XG)
= P(Xy) P(Xgl Xp) PO X5) PRI X) P(Xs| Xg) PCXg| X5, Xs)

P(Xy)

POXgl Xz, Xe)

p(xalxnx“p(xslmXS
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Inference and Learning o

e We now have compact representations of probability
distributions: BN

e A BN M describes a unique probability distribution P
e Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(# |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.
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Learning BNs oo
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
) e R P
&S D > GO
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Learning Graphical Models -

e Scenarios:
e completely observed GMs
directed
undirected
e partially observed GMs
directed
undirected (an open research topic)

e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin"

e We use learning as a name for the process of estimating the
parameters, and in some cases, the topology of the network, from
data.
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MLE for general BN parameters

I
e If we assume the parameters for each CPD are globally

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

£(6:D) =log p(D|6) = log H(H P(Xy [ X ﬂi)J = Z[Zlog P 1% ﬂi)]
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Example: decomposable
likelihood of a directed model 4

e Consider the distribution defined by the directed acyclic GM:

p(x|49) = p(x1 | 91) p(xz | X1’92) p(X3 | X1!93) p(X4 | X5 X3194)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

PGS S
s

© Eric Xing @ CMU, 2006-2011 8




E.g.: MLE for BNs with tabular
CPDs

e Assume each CPD is represented as a table (multinomial)

where def i o'
Oy = p(X; = jl X, = k) \-_.'_'BH
Note that in case of multiple parents, x”will have a composite ':-'_,' o ]

state, and the CPD will be a high-dimensional table -'n'I'EB_’_

The sufficient statistics are counts of family configurations
def

— i oyk
My = Zn XniXnz,

e The log-likelihood is  £(6:0)=log [T = > 1 1098,
iJ.k iJ.k

e Using a Lagrange multiplier N

_ o=

to enforce . 6, =1, we get: ijk S N

ijk

© Eric Xing @ CMU, 2006-2011
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Recall definition of HMM

e Transition probabilities between @ @ @
any two states
POy, =1y, =D=a, @ @ @ .

by, 1y =1) ~ Multinomial(a ;,a, ..., &, ) Viel.

e Start probabilities
p(y,) ~ Multinomial(z,, 7,,..., 7, ).
e Emission probabilities associated with each state
p(x | yi =1) ~ Multinomial(b,,,b, ..., ), Vie L.
or in general: p(x |yl =1)~f(-|6)Viel
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Supervised ML estimation

I
o Given x= x;...xy for which the true state path y= y,...yp/is

known,

T T
£(6;x,y) =log p(x,y) = logH( P T POn 1Yo DT T PO, | Xn,t)j
e Define: n =2 =L
Aj = # times state transition /- occurs in'y
By = # times state /in y emits kin x

e We can show that the maximum likelihood parameters fare:

. . T j
aML — #(/ - ./) _ Z,, Zfzz yn,fflyﬂJ,f _ A/J

DD Y Y D W
pHL #(i > k) Zﬂz;y;,rxn/fr B,

RGN znz;}’é} Zk"gﬂf‘

e Ifyiscontinuous, we can treat {(Xnv,,yw):f:l:T,ﬂ:l:N}as NT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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What if some nodes are not
observed? oo

e Consider the distribution defined by the directed acyclic GM:

P(X180) = p(X | 6) P(Xz | X, ) P(X3 | X, 63) P(X4 | %o, X5, 61)

e Need to compute p(xy|xy) = inference

© Eric Xing @ CMU, 2006-2011 12




Probabilistic Inference

e Computing statistical queries regarding the network, e.g.:
e Isnode Xindependent on node Y given nodes ZW ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if Z=false?
e Whatis the likelihood of some full assignment?
e What is the most likely assignment of values to all or a subset the nodes of the network?

e General purpose algorithms exist to fully automate such
computation
e Computational cost depends on the topology of the network
e Exactinference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling

© Eric Xing @ CMU, 2006-2011 13
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Inferential Query 1: sess
Likelihood oo

e Most of the queries one may ask involve evidence

e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,, X,, ..., X,}

e Without loss of generality X ,={X,,1, ..., X,.},
o Write X,;=X\X, as the set of hidden variables, X,;can be & or X

e Simplest query: compute probability of evidence

P(x,) =Y P(Xy.. X,) = 2. 2P(X.. % X,)

o this is often referred to as computing the likelihood of x,

© Eric Xing @ CMU, 2006-2011 14
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Inferential Query 2: sese
“, s ap [ X J
Conditional Probability °
|
e Often we are interested in the conditional probability
distribution of a variable given the evidence
P(X,,xy) P(X,,xy)
P X X — — H \4 — H \4
X[ Xy=xv) P(xy) ZP(XHZXH’XV)
o this is the a posteriori belief in X;;, given evidence x,
e We usually query a subset Y of all hidden variables X,={Y,Z}
and "don't care" about the remaining, Z:
P(YlXV)ZZP(Y,Z=Z|XV)
e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.
© Eric Xing @ CMU, 2006-2011 15
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Applications of a posteriori Belief |2

e Prediction: what is the probability of an outgome given the starting
condition :
i i

e the query node is a descendent of the evidence
e Diagnosis: what is the probability of disease/fault given symptoms
D)
. A i
e the query node an ancestor of the evidence
e Learning under partial observation

e fillin the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2006-2011 16
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Inferential Query 3: sese
H [ X J
Most Probable Assignment °
e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest
e Such reasoning is usually performed under some given
evidence x,, and ignoring (the values of) other variables Z:
Y |x, =argmax, P(Y|x,)=argmax, > P(Y,Z=z|x,)
e this is the maximum a posteriori configuration of Y.
© Eric Xing @ CMU, 2006-2011 17
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Complexity of Inference :

Thm:
Computing P(Xz=xg4| x,) in an arbitrary GM is NP-hard

e Hardness does not mean we cannot solve inference

e |Itimplies that we cannot find a general procedure that works
efficiently for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

© Eric Xing @ CMU, 2006-2011 18
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Approaches to inference &
e Exact inference algorithms
e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)
e Approximate inference techniques
e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
© Eric Xing @ CMU, 2006-2011 19
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Marginalization and Elimination .

e A signal transduction pathway:

O~

What is the likelihood that protein E is active?

e Query: Ae)

P(e)=>.>> > P(abcde)

a naive summation needs to
enumerate over an e><ponemwa|
number of terms

e By chain decomposition, we get

=>">> > P(a)P(b|a)P(c|b)P(d|c)P(e|d)

© Eric Xing @ CMU, 2006-2011 20
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Elimination on Chains

O~ D>~ o—Coo—CED

e Rearranging terms ...

P(e)=>.>.>.> P(a)P(b|a)P(c|b)P(d |c)P(e|d)
=222 Pc|b)P(d[c)P(e|d)D P(a)P(bla)

© Eric Xing @ CMU, 2006-2011 21

Elimination on Chains

CLO—C o= o= o>

e Now we can perform innermost summation
P(e)=2_>.> P(c|b)P(d[c)P(e|d)D P(a)P(b|a)
=22 > P(c|b)P(d[c)P(e]d)p(b)

e This summation "eliminates" one variable from our
summation argument at a "local cost".

© Eric Xing @ CMU, 2006-2011 22
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Elimination in Chains 83
|
DO~ D—Ceo—Coo—CED
e Rearranging and then summing again, we get
P(e)=>.>"> P(c|b)P(d|c)P(e|d)p(b)
=> > P(d|c)P(e|d)> P(c|b)p(b)
=> > P(d|c)P(e|d)p(c)
Elimination in Chains 83

CEO>—CE o>~ —CEo—CD
. ———

e Eliminate nodes one by one all the way to the end, we get

P(e)=2_P(e|d)p(d)
e Complexity:

e Each step costs O(|Val(X;)|*|Val(Xi,,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")

© Eric Xing @ CMU, 2006-2011 24
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Hidden Markov Model

|
(=)= -~
ORONORER®
PO, Y) = P(XgeeeeXgy Ve ooy yr)

=p(yD) P&y Y1) P21 YD) P2 [Y2) - PO | Y7-0) PR [ Y1)

Conditional probability:

plyiler.....xp) = Z - Z Z . Z LR 7 o S P ) |
n i

= D 2>y plw)pelw) - plyrlyr-p(er|yr)
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Hidden Markov Model :

Conditional probability:

plyiler.....xp) = Z - Z Z . Z LR 7 o S P ) |
i Wim1 Mig1 ur
= Z ven Z Z Ve Z;H(;Ul Jpla |!}l) cen P(!}'r]?f‘r_t )IJ(J":'h‘J'r)
L Wi—1 Hi+1 nr
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Inference on General BN via secs
Variable Elimination .
General idea:
e Write query in the form
P(X;.e)= ZZZH P(x | pa)
e this suggests an "eIiminationnorder" ?)f Iaient variables to be marginalized
e [teratively
e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product
e wrap-up
P(X,,e
P(X, €)= 1)
P(e)
© Eric Xing @ CMU, 2006-2011 27
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The Sum-Product Operation :

e In general, we can view the task at hand as that of computing
the value of an expression of the form:

211¢

z ¢geF
where # is a set of factors

e We call this task the sum-product inference task.

© Eric Xing @ CMU, 2006-2011 28
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Outcome of elimination .
. I
e Let X be some set of variables,
let # be a set of factors such that for each ¢ € #, Scope[¢] € X,
let Y — X be a set of query variables,
and let Z = X-Y be the variable to be eliminated
e The result of eliminating the variable Z is a factor
r()=2[1¢
z ¢ge&F
e This factor does not necessarily correspond to any probability or conditional
probability in this network. (example forthcoming)
© Eric Xing @ CMU, 2006-2011 29
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Dealing with evidence :
e Conditioning as a Sum-Product Operation
e The evidence potential: S(E..8) = 1 if E =¢
Y0 if E 26
e Total evidence potential: _ _
S(E,€)=]]4(E;.&)
ielg
e Introducing evidence --- restricted factors:
(Y, €)= [[#x5(E €
z.e geF
© Eric Xing @ CMU, 2006-2011 30
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The elimination algorithm .
Procedure Elimination (
G, // the GM
E, // evidence
Z, Il Set of variables to be eliminated
X, Il query variable(s)
)
1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (£ Z, <)
4. Normalization (%)
© Eric Xing @ CMU, 2006-2011 31
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The elimination algorithm :

Procedure Initialize (G, Z)

1. LetZz,...,Z be an ordering of Z
such that Z; < Z;iff i <

2. Initialize £ with the full the set of
factors

Procedure Evidence (E)
1. foreachief,
F=FU3(E; €)

Procedure Sum-Product-Variable-
Elimination (£ Z, <)

1. fori=1,...,k
F < Sum-Product-Eliminate-Var(£ Z;)
2. ¢ — ngﬁef ¢

3. return ¢

4. Normalization (¢*)
© Eric Xing @ CMU, 2006-2011
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e elimination algorithm :
. o !
Procedure Initialize (G, Z) Procedure Normalization (¢*)
1. LetZz,...,Z, be an ordering of Z 1. PXX|IE)=¢ (X)/2, ¢ (X)
such that Z; < Z;iff i < -
2. Initialize £ with the full the set of
factors
Procedure Evidence (E)
1. foreachief,
F=FUS(E, &) Procedure Sum-Product-Eliminate-Var (
h Z Il Set of factors
Procedure Sum-Product-Variable- 2/l Variable to be eliminated
Elimination (£ Z, <) )
; fori=1 K 7z F'—{¢eF:Ze Scope[d}
< Sum-Product-Eliminate-Var(# z) 2 < <#-F
2 gl ¢ 3 yeldlyes d
3. return ¢ 4 TeXy
Zn
4. Normalization (¢*) 5. return #"u {7}
© Eric Xing @ CMU, 2006-2011 33
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From elimination to mesSsage eece
[ X L1
eoo
: o0
passing :
e Recall ELIMINATION algorithm: O~ R >~ o~ B —ED
e Choose an ordering Z in which query node f is the final node
e Place all potentials on an active list
e Eliminate node i by removing all potentials containing i, take sum/product over ;.
e Place the resultant factor back on the list
e For a TREE graph:

e Choose query node f as the root of the tree
e View tree as a directed tree with edges pointing towards from f
e Elimination ordering based on depth-first traversal
e Elimination of each node can be considered as
message-passing (or Belief Propagation) directly
along tree branches, rather than on some transformed graphs
- thus, we can use the tree itself as a data-structure to do general inference!!

© Eric Xing @ CMU, 2006-2011 34
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Message passing for trees

Let m;(x;) denote the factor resulting
from eliminating variables from bellow
up to i, which is a function of x;:

mjilxi) Z(-'lﬁ.l',]l'[.J'...J'.] 1_[ nu,f.r,])

REN(iN

This is reminiscent of a message sent
from jtoi.

Z ()i, z5) H m;(;)

T kEN (§)\i

plx f}’)(l'(?f) H ”"r.f(“’-'f)

eeN(S)

m;;(x;) represents a "belief" of x; from
Xl
© Eric Xing @ CMUJ 2006-2011 35

e Elimination on trees is equivalent to message passing along
tree branches!

© Eric Xing @ CMU, 2006-2011 36
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The message passing protocol: s
e A two-pass algorithm:
© Eric Xing @ CMU, 2006-2011 37
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Belief Propagation (SP-algorithm): | ss2¢
[ L
. . . ®o0
Sequential implementation :
Sum-Propror(T. E)
EVIDENCE(E)
[ = CnooseRoot(V)
for ¢ € N(f) <\
COLLECT( f, )
for ¢ € N(f)
DisTRIBUTE f, #)
for i & V —~
CoMPUTEMARGINAL(Y) L
EVIDERCE[ E) SR |
forie K !
PF (i) = Pz, £i) ~
fori ¢ £ Ao gd
W () = (ay) £ o
COLLECT(i,
e O
Qi
'
SENDMESSAGE(]. 1) '\"—\_I i
mjilay) ZI_J\"I'i.r'jIr"[.r._.r,:l H tgylrg)) i
T keN( Dhs: W
CoMPUTEMARGINAL(Y) o~ N
plxi) o pF (i) ll mjil:) O e O
JENT) © Eric Xing @ CMU, 2006-2011 38
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Belief Propagation (SP-algorithm): sese
. . [ X J
Parallel synchronous implementation | e
I
e Foranode of degree d, whenever messages have arrived on any subset of d-1 node,
compute the message for the remaining edge and send!
A pair of messages have been computed for each edge, one for each direction
All incoming messages are eventually computed for each node
(X X ]
0000
0000
e
Correctness of BP on tree .

e Collollary: the synchronous implementation is "non-blocking"

e Thm: The Message Passage Guarantees obtaining all
marginals in the tree

myi(xi) = E(iﬁ(xj)w(%mfj) H mk]‘(%‘))

4 EEN(\i

e What about non-tree?

© Eric Xing @ CMU, 2006-2011 40
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Inference on general GM

e Now, what if the GM is not a tree-like graph?

e Can we still directly run message
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run message-passing
oniit!

—> Junction tree algorithm

© Eric Xing @ CMU, 2006-2011 41

A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

© Eric Xing @ CMU, 2006-2011 42
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The Shafer Shenoy Algorithm :
e Shafer-Shenoy algorithm
e Message from clique /to clique j :
Hisi = Z V/ciHﬂk—n (Sy)
e Clique marginal CiNSy k<]
p(C)) <y, H/lk—n (Sw)
k
© Eric Xing @ CMU, 2006-2011 43
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The Junction tree algorithm for HMM °
e Ajunction tree for the HMM
'//()_’1_:)(1) v(%.%2) v (¥ ys) v(Yrayr)
(OO0 o > + D
DaaOasD gD — 0 T T il
) G G () 4%)'# ¢(y3>l% ¢(yr)!f
° Rightward pass VOax)  v(yx) Wiy xr)
;ulaHl(yHl):z'//(yt’yt+1)/ut—l~>t(yt),u[1‘(yl+l) e () Y Yea) t i (Yen)
n - — = =1
3 P 1Yt (V) PO | Vor) T
Ve /‘,T(Yv-l)l,
= p(XM | %u)zay‘,yl_lﬂt—lat(%)
This is exactly the foyﬁNard algorithm! Y (Vra0 X)

e Leftward pass ... s () VD) tra )

Hreget (yt) = z '//(yt ' yt+1):ut<—t+1 (yt+1)/u[1* (yt+1) B - | I
Vet Hr (Vr1) :;:
= Zp(yrA |yr):uf<—f+1 ()’M)P(Xm |)/f+1) !

Y - \
This i§ &xactly the backward algorithm! Y (Yyor Xrr)

© Eric Xing @ CMU, 2006-2011 44
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Summary

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithms

e What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

© Eric Xing @ CMU, 2006-2011 45
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Ext ding: oo
xtra reading: :
© Eric Xing @ CMU, 2006-2011 46
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From Elimination to JT on a
general Bayesian network

What is the probability that hawks are leaving given that the grass condition is poor?

[ X X ]

0000

HH
Example: Variable Elimination o

e Query: P(A|h)

e Need to eliminate: BC.D,E,F,6,H 0 o
e |Initial factors: D Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) CA)
e Choose an elimination order: H,6,F,E,D,CB &>
e Step 1:
e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., h))
m, (e, f)=p(h=h e, f) A"‘A

D
e This step is isomorphic to a marginalization step:
m, (e, f):z p(hle, f)o(h=h)
h &

© Eric Xing @ CMU, 2006-2011
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Example: Variable Elimination 5
|
e Query: (B |h)
e Need to eliminate: BCD,EF,6 0 o
e Initial factors: 0 G
P(@)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e o
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
&
e Step 2: Eliminate &
° ut
o m, (€)= p(gle)=1
g B
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)mg(e)mh(e, f) O
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, ) O, £
00
0000
0000
. . . b
Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B,CD,E,F 0 o
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e o
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, )
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & W
e Step 3: Eliminate F
e compute
m,(e,a)=>_p(f a)m, (e, f)
f Ca) A
© O

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m, (a,e)

© Eric Xing @ CMU, 2006-2011
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Example: Variable Elimination

e Query: A(B|h)
e Need to eliminate: BC,D,E

e |[nitial factors:
P(@)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f)

®
©
O—0

D

= P(a)P(b)P(c|b)P(d [a)P(e|c,d)P(f |a)m, (e, ) &
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m;,(a,e)
e Step 4: Eliminate £
e compute
m.(a,c,d)=>_ p(e|c,d)m,(a,e)
e Ca8) A
= P(a)P(b)P(c|b)P(d|a)m,(a,c,d) D 2
E
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: 8,C,D 0 o
e |[nitial factors: 0 Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|b)P(d [a)P(e|c,d)P(f |a)P(g|e)m, (e, f) (&) (D
= P(a)P(b)P(c|b)P(d | a)P(e|c,d)P(f [a)m, (e, f) OO

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

e Step 5: Eliminate D
e compute m, (a,C):Z p(d |a)me(a,c,d)
d

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2011
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Example: Variable Elimination

e Query: (B |h)

o Need to eliminate: 8,C

e |[nitial factors:

P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f [a)P(g|e)m,(e, )

= P(a)P(b)P(c|d)P(d |)P(e[c,d)P(f |a)m, (e, T) OO

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)

e Step 6: Eliminate €
o compute m.(a,b) =) p(c|b)m,(a,c)

= P(a)P(b)P(c|d)m,(a,c)
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Example: Variable Elimination

e Query: A(B|h)

e Need to eliminate: 8

e Initial factors:
P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, )
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f|a)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m,(a,b)

e Step 7: Eliminate A2

+ compute m,(a) = Y. p(b)m, (a,b)
b

= P(a)m, (a)
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Example: Variable Elimination o
|
IR D D
e Initial factors: (O (D
P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) CA)

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g]|e)m,(e, )
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, ) e 0
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m_(a,b)
= P(a)m, (a)
e Step8:Wrap-up  p(a,h)=p(@m,(a), p(h)=> p(a)m,(a)
p(a)m,(a) !
> p@)m,(a)
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=P(alh)=

. . eoeo
Complexity of variable sels
elimination -

e Suppose in one elimination step we compute
M (Yareee Vi) = 2, M (% Ve Vi)
X k
m' (X, Yireens Vi) = H mi(X'YCi)
i=1
This requires
o ke|Val(X)[s[T|Val(Y;)| multiplications
— Foreach value of x, y,, ..., y,, we do Amultiplications
o [ValC)e[T|Val(Y.)| additions
— For each value of y,, ..., y, we do /Va/(X)/ additions
Complexity is exponential in number of variables in the
intermediate factor g @ o, 2006201 .
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Elimination Cliques o
@ D @ @
© O CO—@
o e
©® G @ &
@ & @ @ @@ OP=EE
@@ G O)
m, (e, f) m, (€) m; (e,a) m,(a,c,d)
® @ & —@ = @&—@ = @
0‘0' e,
m, (a,c) m. (a,b) m, (2)
. . [ X X J
Understanding Variable sels
Elimination oe

e A graph elimination algorithm

Zs > o °

e Intermediate terms correspond to the cliques resulted from
elimination

e “good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found

e Applies to undirected GMs
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Elimination Clique 5
. o
e Recall that Induced dependency during marginalization is
captured in elimination cliques
e Summation <-> elimination
e Intermediate term <-> elimination clique
(ﬂ)l”{b)f (elb) P(d|a)P(elc, d) P(fa) P(gle) P(hle, f)
= Pla)P(b)P(c|b) P(d|a)P(e|c, d)P(fla)P(gle)onle. )
= P tn}f’{b}l’ (c|b)P(d|a)P(elc, d)P(fla)o,le)onle, )
= P(a)P(b)P(c|b)P(d|a) Plele. d)é la. )
O—AD 0 D
= P(a)P(b)P(c)b)P(dla)o,(a. c,d) Qﬁ
= P(a)P(b)P(e|b)dala. c) ‘
=  Pla)P(b)¢.(a,b)
= Pla)dula)
= ola) /
: . '
e Can this lead to an generic
inference algorithm?
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H '3
A Clique Tree :
m,(a,c,d)
= z p(e | Cvd)mg (e)mf (ave)
¢ © Eric Xing @ CMU, 2006-2011 60
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From Elimination to Message secs
H [ X J
Passing g
e Elimination = message passing on a clique tree
-5 §fi I
Il
m,(a,c,d)
=2 p(elc,d)m,(e)m, (a,e)
e Messages can be reused
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From Elimination to Message sece
( X J
- [ X J
Passing :
e Elimination = message passing on a clique tree
e Another query ...
o Messages m,and m, are reused, others need to be recomputed
© Eric Xing @ CMU, 2006-2011 62
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The Shafer Shenoy Algorithm

e Shafer-Shenoy algorithm

e Message from clique /to clique j :

Hisi = Z V/ciHﬂk—n (Sq)

. . Ci\S; k#j
e Clique marginal o !

p(C)) <y, H/lk—n (Sw)
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A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...
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