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Reading: Chap. 8, C.B book
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Recap of BN Representation
Joint probability dist. on multiple variables:
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If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent (as described by a 
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P(X1, X2, X3, X4, X5, X6)
= P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)

i y p ( y
GM), the joint can be factored to simpler products, e.g., 
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Inference and Learning
We now have compact representations of probability 
distributions:  BN

A BN M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.

4© Eric Xing @ CMU, 2006-2011



3

The goal:

Learning BNs

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)
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Learning Graphical Models
Scenarios:

completely observed GMsp y
directed
undirected 

partially observed GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood estimation (MLE)
Bayesian estimation
Maximal conditional likelihood
Maximal "Margin" 

We use learning as a name for the process of estimating the 
parameters, and in some cases, the topology of the network, from 
data.

6© Eric Xing @ CMU, 2006-2011



4

MLE for general BN parameters
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-p , y , g
likelihood function decomposes into a sum of local terms, one 
per node:
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Consider the distribution defined by the directed acyclic GM:

Example: decomposable 
likelihood of a directed model
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This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.
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E.g.: MLE for BNs with tabular 
CPDs

Assume each CPD is represented as a table (multinomial) 
where

)|(
def

kXjXθ

Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

The log-likelihood is
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Recall definition of HMM
Transition probabilities between 
any two states

y2 y3y1 yT... 

or

Start probabilities 
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or in general:
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Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
known,
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Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:
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If y is continuous, we can treat                                               as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Consider the distribution defined by the directed acyclic GM:

What if some nodes are not 
observed?

),,|(),|(),|()|()|( 132431311211 θθθθθ xxxpxxpxxpxpxp =
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Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?

Probabilistic Inference

What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such 
computation 

C t ti l t d d th t l f th t kComputational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 

13© Eric Xing @ CMU, 2006-2011

Inferential Query 1: 
Likelihood

Most of the queries one may ask involve evidence

Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

Without loss of generality Xv={Xk+1, … , Xn}, 

Write XH=X\Xv as the set of hidden variables, XH can be ∅ or X

Simplest query: compute probability of evidence
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Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  xv
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Often we are interested in the conditional probability 
distribution of a variable given the evidence

Inferential Query 2: 
Conditional Probability

g

this is the a posteriori belief in XH, given evidence xv

We usually query a subset Y of all hidden variables X ={Y Z}
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We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.
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Prediction: what is the probability of an outcome given the starting 
condition

A CB
?

Applications of a posteriori Belief

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

A CB

A CB
?

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not 
restricted by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
16© Eric Xing @ CMU, 2006-2011
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Inferential Query 3: 
Most Probable Assignment

Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:
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this is the maximum a posteriori configuration of Y.

z
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Thm:
C ti P(X | ) i bit GM i NP h d

Complexity of Inference

Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that worksIt implies that we cannot find a general procedure that works 
efficiently for arbitrary GMs
For particular families of GMs, we can have provably efficient 
procedures

18© Eric Xing @ CMU, 2006-2011
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Approaches to inference

Exact inference algorithms

The elimination algorithm
Belief propagation
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Variational algorithms 
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods

19© Eric Xing @ CMU, 2006-2011

A signal transduction pathway:

B C ED

Marginalization and Elimination

Query: P(e)

A B C ED

∑∑∑∑=
d c b a

e)P(a,b,c,d,eP )(

What is the likelihood that protein E is active?

By chain decomposition, we get

∑∑∑∑=
d c b a

dePcdPbcPabPaP )|()|()|()|()(

a naïve summation needs to 
enumerate over an exponential 
number of  terms
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A B C ED

Elimination on Chains

A B C ED

Rearranging terms ...
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A B C EDX

Elimination on Chains

Now we can perform innermost summation

A B C EDX

∑∑∑
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This summation "eliminates" one variable from our 
summation argument at a "local cost".
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A B C EDX X

Elimination in Chains

A B C ED
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A B C EDX X X X

Elimination in Chains

Eliminate nodes one by one all the way to the end, we get

∑ dpdePeP )()|()(

A B C EDX X X X

Complexity:
Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(nk2)
Compare to naïve evaluation that sums over joint values of n-1 variables O(kn)

∑=
d

dpdePeP )()|()(
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Hidden Markov Model

y2 y3y1 yT... 

p(x, y) = p(x1……xT, y1, ……, yT) 
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)

Conditional probability:

A AA Ax2 x3x1 xT... 

25© Eric Xing @ CMU, 2006-2011

Hidden Markov Model

Conditional probability:
y2 y3y1 yT... 

p y

A AA Ax2 x3x1 xT... 

26© Eric Xing @ CMU, 2006-2011
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General idea:
Write query in the form

Inference on General BN via 
Variable Elimination

Write query in the form

this suggests an "elimination order" of latent variables to be marginalized  

Iteratively

Move all irrelevant terms outside of innermost sum
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Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up
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The Sum-Product Operation
In general, we can view the task at hand as that of computing 
the value of an expression of the form:p

where F is a set of factors

∑∏
∈z Fφ

φ

We call this task the sum-product inference task.

28© Eric Xing @ CMU, 2006-2011
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Outcome of elimination
Let X be some set of variables, 
let F be a set of factors such that for each φ ∈ F , Scope[φ ] ∈ X,let F be a set of factors such that for each φ ∈ F , Scope[φ ] ∈ X, 
let Y ⊂ X be a set of query variables, 
and let Z = X−Y be the variable to be eliminated

The result of eliminating the variable Z is a factor

∑∏=Y φτ )(

This factor does not necessarily correspond to any probability or conditional 
probability in this network. (example forthcoming)

∑∏
∈z Fφ
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Dealing with evidence
Conditioning as a Sum-Product Operation

The evidence potential:

Total evidence potential:

Introducing evidence --- restricted factors:
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The elimination algorithm
Procedure Elimination (

G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s) 
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, )
4. Normalization (F)

31© Eric Xing @ CMU, 2006-2011

The elimination algorithm
Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

h th t Z Z iff i < jsuch that Zi Zj iff i < j
2. Initialize F with the full the set of 

factors 

Procedure Evidence (E)
1. for each i∈ΙE , 
F =F ∪δ(Ei, ei)

Procedure Sum Product VariableProcedure Sum-Product-Variable-
Elimination (F, Z, )

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. φ ← ∏φ∈F φ
3. return φ
4. Normalization (φ )

32© Eric Xing @ CMU, 2006-2011
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The elimination algorithm
Procedure Normalization (φ )
1. P(X|E)=φ (X)/∑xφ (X)

Procedure Initialize (G, Z)
1. Let Z1, . . . ,Zk be an ordering of Z

h th t Z Z iff i < j

Procedure Sum-Product-Eliminate-Var (
F, // Set of factors
Z // Variable to be eliminated

such that Zi Zj iff i < j
2. Initialize F with the full the set of 

factors 

Procedure Evidence (E)
1. for each i∈ΙE , 
F =F ∪δ(Ei, ei)

Procedure Sum Product Variable Z // Variable to be eliminated
)

1. F ′ ← {φ ∈ F : Z ∈ Scope[φ]}
2. F ′′ ← F − F ′
3. ψ ←∏φ∈F ′ φ
4. τ ← ∑Z ψ
5. return F ′′ ∪ {τ}

Procedure Sum-Product-Variable-
Elimination (F, Z, )

1. for i = 1, . . . , k
F← Sum-Product-Eliminate-Var(F, Zi)

2. φ ← ∏φ∈F φ
3. return φ
4. Normalization (φ )

33© Eric Xing @ CMU, 2006-2011

From elimination to message 
passing

Recall ELIMINATION algorithm:
Choose an ordering Z in which query node f is the final node
Place all potentials on an active list
Eliminate node i by removing all potentials containing i, take sum/product over xi.
Place the resultant factor back on the list

For a TREE graph:
Choose query node f as the root of the tree
View tree as a directed tree with edges pointing towards from f
Elimination ordering based on depth first traversalElimination ordering based on depth-first traversal
Elimination of each node can be considered as 
message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs
thus, we can use the tree itself as a data-structure to do general inference!!

34© Eric Xing @ CMU, 2006-2011
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f

Message passing for trees

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow f

i

j

up to i, which is a function of xi:

This is reminiscent of a message sent 
from j to i.

j

k l
mij(xi) represents a "belief" of xi from 
xj!

35© Eric Xing @ CMU, 2006-2011

Elimination on trees is equivalent to message passing along 
tree branches!

f

i

j

k l
36© Eric Xing @ CMU, 2006-2011



19

The message passing protocol:
A two-pass algorithm:

X1

m21(X1) m12(X2)

m24(X4)

X2

X3
X4

m32(X2) m42(X2)

m23(X3)

37© Eric Xing @ CMU, 2006-2011

Belief Propagation (SP-algorithm): 
Sequential implementation

38© Eric Xing @ CMU, 2006-2011
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Belief Propagation (SP-algorithm): 
Parallel synchronous implementation

For a node of degree d, whenever messages have arrived on any subset of d-1 node, 
compute the message for the remaining edge and send!

A pair of messages have been computed for each edge, one for each direction
All incoming messages are eventually computed for each node

39© Eric Xing @ CMU, 2006-2011

Correctness of BP on tree

Collollary: the synchronous implementation is "non-blocking"Collollary: the synchronous implementation is non-blocking

Thm: The Message Passage Guarantees obtaining all 
marginals in the tree

What about non-tree?

40© Eric Xing @ CMU, 2006-2011
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Inference on general GM
Now, what if the GM is not a tree-like graph?

Can we still directly run message 
message-passing protocol along its edges?

For non-trees, we do not have the guarantee that message-passing 
will be consistent!

Then what?
Construct a graph data-structure from P that has a tree structure, and run message-passing 
on it!

Junction tree algorithm

41© Eric Xing @ CMU, 2006-2011

A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique treeConstruction of junction trees a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...

42© Eric Xing @ CMU, 2006-2011
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The Shafer Shenoy Algorithm
Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
∑ ∏
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i
SC jk
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kiikCi SCp
i

)()( µψ
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The Junction tree algorithm for HMM
A junction tree for the HMM

y2 y3y1 yT...

),( 11 xyψ ),( 21 yyψ ),( 32 yyψ ),( TT yy 1−ψ

)(yφ )(yφ

Rightward pass

A AA Ax2 x3x1 xT

... 

... 

),( 22 xyψ ),( 33 xyψ ),( TT xyψ

)( 2yζ )( 3yζ )( Tyζ
)( 1yφ )( 2yφ⇒⇒
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This is exactly the forward algorithm!

Leftward pass …

This is exactly the backward algorithm! 
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Summary
The simple Eliminate algorithm captures the key algorithmic 
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

This graph interpretation will also provide hints about how to design 
improved inference algorithmsimproved inference algorithms 

What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 

45© Eric Xing @ CMU, 2006-2011

Extra reading:

46© Eric Xing @ CMU, 2006-2011
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A food web

From Elimination to JT on a 
general Bayesian network

B A

DC

E F

G H

What is the probability that hawks are leaving given that the grass condition is poor?

47© Eric Xing @ CMU, 2006-2011

Query: P(A |h)
Need to eliminate: B,C,D,E,F,G,H

B A

Example: Variable Elimination

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh ==
h~

∑ ==
h

h hhfehpfem )~(),|(),( δ

B A

DC

E F

G
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Query: P(B |h)
Need to eliminate: B,C,D,E,F,G

B A

Example: Variable Elimination

Initial factors:

Step 2: Eliminate G

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h⇒

Step 2: Eliminate G
compute

1)|()( == ∑
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg

=

⇒
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Query: P(B |h)
Need to eliminate: B,C,D,E,F

B A

Example: Variable Elimination

Initial factors:

Step 3: Eliminate F

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 3: Eliminate F
compute

∑=
f

hf femafpaem ),()|(),(

),(),|()|()|()()( eamdcePadPbcPbPaP f⇒

B A

DC

E
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Query: P(B |h)
Need to eliminate: B,C,D,E

B A

Example: Variable Elimination

Initial factors:

Step 4: Eliminate E

DC

E F

G H
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

⇒
⇒
⇒

B A

DC

E

Step 4: Eliminate E
compute

∑=
e

fe eamdcepdcam ),(),|(),,(

),,()|()|()()( dcamadPbcPbPaP e⇒

B A

DC
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Query: P(B |h)
Need to eliminate: B,C,D

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 5: Eliminate D
compute ∑=

d
ed dcamadpcam ),,()|(),(

),()|()()( camdcPbPaP d⇒

B A

C
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Query: P(B |h)
Need to eliminate: B,C

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 6: Eliminate C
compute

),()|()()( camdcPbPaP d⇒

∑=
c

dc cambcpbam ),()|(),(

),()|()()( camdcPbPaP d⇒

B A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 7: Eliminate B
compute

),()()(
),()|()()(

bambPaP
camdcPbPaP

c

d

⇒
⇒

∑=
b

cb bambpam ),()()(

)()( amaP b⇒

A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 8: Wrap-up
)()(

),()()(
),()|()()(

amaP
bambPaP

camdcPbPaP

b

c

d

⇒
⇒
⇒

, )()()~,( amaphap b=

∑
=⇒

a
b

b

amap
amaphaP

)()(
)()()~|(

∑=
a

b amaphp )()()~(
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Suppose in one elimination step we compute

∑= yyxmyym )(')(

Complexity of variable 
elimination

This requires 
multiplications

─ For each value of x, y1, …, yk, we do k multiplications

∑=
x

kxkx yyxmyym ),,,(),,( 11 KK

∏
=

=
k

i
cikx i

xmyyxm
1

1 ),(),,,(' yK

∏••
i

Ci
Xk )Val()Val( Y

additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor

∏•
i

Ci
X )Val()Val( Y
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Elimination Cliques

B A

DC

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

E F

G

DC

E F

G H

B A

DC

E F

B A

DC

E

G H G

B A

DC

B A

C

B A A

),( femh )(emg ),( aem f ),,( dcame

),( camd ),( bamc )(amb
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Understanding Variable 
Elimination

A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Intermediate terms correspond to the cliques resulted from 
eliminationelimination

“good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 

Applies to undirected GMs
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Recall that Induced dependency during marginalization is 
captured in elimination cliques

Elimination Clique

p q
Summation <-> elimination
Intermediate term <-> elimination clique

B A B A A

Can this lead to an generic 
inference algorithm?

E F

H

A

E F

C

E

G

A

DC

E

A

DC
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A Clique Tree

A

E F

B A

C

A

DC

A

DC

B A A

em
fm

bmcm

dm

E F

H

E

G

E hm
gm

∑=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(
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Elimination ≡ message passing on a clique tree

From Elimination to Message 
Passing

A

B A

C

A

A

DC

B A A

fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

≡
d )(

Messages can be reused

E F

H

E F

E

G

A

DC

E hm
gm

em
∑=

e
fg

e

eamemdcep
dcam

),()(),|(
),,(
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From Elimination to Message 
Passing

Elimination ≡ message passing on a clique tree
Another query

A

B A

C

A

A

DC

B A A

cm bm

dm
fm

Another query ...

E F

H

E F

E

G

A

DC

E

gm

em

hm

Messages mf and mh are reused, others need to be recomputed

62© Eric Xing @ CMU, 2006-2011



32

The Shafer Shenoy Algorithm
Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
∑ ∏

≠
→→ =

iji

i
SC jk

kiikCji S
\

)(µψµ

∏ →∝
k

kiikCi SCp
i

)()( µψ
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A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique treeConstruction of junction trees a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...
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