Machine Learning
10-701/15-781, Fall 2011

Inference and Learning
For Bayesian Networks

Eric Xing

Lecture 14, October 31, 2011

Reading: Chap. 8, C.B book

© Eric Xing @ CMU, 2006-2011
Recap of BN Representation

- Joint probability dist. on multiple variables:
 \[P(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2)P(X_4 | X_1, X_2, X_3)P(X_5 | X_1, X_2, X_3, X_4)P(X_6 | X_1, X_2, X_3, X_4, X_5) \]

- If \(X_i \)'s are independent: \((P(X_i | \cdot) = P(X_i)) \)
 \[P(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6) = \prod_i P(X_i) \]

- If \(X_i \)'s are conditionally independent (as described by a GM), the joint can be factored to simpler products, e.g.,

\[
P(X_1, X_2, X_3, X_4, X_5, X_6 | p_{X_6 | X_2, X_5}) = P(X_1)P(X_2 | X_1)P(X_3 | X_2)P(X_4 | X_1)P(X_5 | X_4)P(X_6 | X_2, X_5)
\]

Inference and Learning

- We now have compact representations of probability distributions: **BN**
- A BN \(M \) describes a unique probability distribution \(P \)
- Typical tasks:
 - **Task 1:** How do we answer queries about \(P \)?
 - We use **inference** as a name for the process of computing answers to such queries
 - **Task 2:** How do we estimate a plausible model \(M \) from data \(D \)?
 i. We use **learning** as a name for the process of obtaining point estimate of \(M \).
 ii. But for **Bayesian**, they seek \(p(M | D) \), which is actually an **inference** problem.
 iii. When not all variables are observable, even computing point estimate of \(M \) need to do **inference** to impute the **missing data**.
Learning BNs

The goal:

Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)

\[(B, E, A, C, R) = (T, F, F, T, F)\]
\[(B, E, A, C, R) = (T, F, T, T, F)\]
\[\ldots\ldots\]
\[(B, E, A, C, R) = (F, T, T, T, F)\]

\[\begin{array}{c|c|c|c|c|c}
B & E & A & C & R & P(A | E, B) \\
\hline
e & b & 0.9 & 0.1 \\
e & b & 0.2 & 0.8 \\
e & b & 0.9 & 0.1 \\
e & b & 0.01 & 0.99 \\
\end{array}\]

Learning Graphical Models

- Scenarios:
 - completely observed GMs
 - directed
 - undirected
 - partially observed GMs
 - directed
 - undirected (an open research topic)

- Estimation principles:
 - Maximal likelihood estimation (MLE)
 - Bayesian estimation
 - Maximal conditional likelihood
 - Maximal "Margin"

- We use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.
MLE for general BN parameters

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

\[
\ell(\theta; D) = \log p(D | \theta) = \log \prod_{i=1}^{n} \left(\prod_{j=1}^{d_i} p(x_{ij} | x_{\text{pa}(i)}, \theta_i) \right) = \sum_{i=1}^{n} \sum_{j=1}^{d_i} \log p(x_{ij} | x_{\text{pa}(i)}, \theta_i)
\]

Example: decomposable likelihood of a directed model

- Consider the distribution defined by the directed acyclic GM:

\[
p(x | \theta) = p(x_1 | \theta_1) p(x_2 | x_1, \theta_2) p(x_3 | x_1, \theta_3) p(x_4 | x_2, x_3, \theta_4)
\]

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.
E.g.: MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where
 \[\theta_{jk} = p(X_j = j \mid X_{z_j} = k) \]

 - Note that in case of multiple parents, \(X_z \) will have a composite state, and the CPD will be a high-dimensional table
 - The sufficient statistics are counts of family configurations
 \[n_{jk} = \sum_{i} x_{i,j} x_{i,z_j} \]

 - The log-likelihood is
 \[\ell(\theta, \mathcal{D}) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk} \]

 - Using a Lagrange multiplier to enforce \(\sum_j \theta_{ijk} = 1 \), we get:
 \[\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum n_{jik}} \]

Recall definition of HMM

- Transition probabilities between any two states
 \[p(y_t^i = 1 \mid y_{t-1}^i = 1) = a_{ij} \]

 or
 \[p(y_t \mid y_{t-1}^1 = 1) \sim \text{Multinomial}(a_{11}, a_{12}, \ldots, a_{1M}) \forall i \in \mathcal{I}. \]

- Start probabilities
 \[p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_M) \]

- Emission probabilities associated with each state
 \[p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(h_{11}, h_{12}, \ldots, h_{1M}) \forall i \in \mathcal{I}. \]

 or in general:
 \[p(x_t \mid y_t^i = 1) \sim f(\cdot \mid \theta_i) \forall i \in \mathcal{I}. \]
Supervised ML estimation

- Given \(x = x_1...x_N \) for which the true state path \(y = y_1...y_N \) is known,
 \[
 L(\Theta; x, y) = \log p(x, y) = \log \prod_x \left(\prod_{t=1}^{T} p(y_{n_t} | y_{n_{t-1}}) \prod_{t=2}^{T} p(x_{n_t} | x_{n_{t-1}}) \right)
 \]
- Define:
 \[
 A_{ij} = \text{# times state transition } i \rightarrow j \text{ occurs in } y
 \]
 \[
 B_{ik} = \text{# times state } i \text{ in } y \text{ emits } k \text{ in } x
 \]
- We can show that the maximum likelihood parameters \(\theta \) are:
 \[
 \sum_{i} \sum_{j} \sum_{k} a_{ij}^{ML} = n_t, \quad b_{ik}^{ML} = \frac{\sum_{j} A_{ij} Y_{n_{t-1}}^{j} Y_{n_{t}}^{j}}{\sum_{i} \sum_{j} Y_{n_{t}}^{j}} = \frac{B_{ik}}{\sum_{k} B_{ik}}
 \]
- If \(y \) is continuous, we can treat \(\{x_{n_{t}}, y_{n_{t}}; t = 1:T, n = 1:N\} \) as \(N \times T \) observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

What if some nodes are not observed?

- Consider the distribution defined by the directed acyclic GM:
 \[
 p(x \mid \Theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_1) p(x_4 \mid x_2, x_3, \theta_1)
 \]
- Need to compute \(p(x_4 \mid x_3) \rightarrow \text{inference} \)
Computing statistical queries regarding the network, e.g.:
- Is node X independent on node Y given nodes Z,W?
- What is the probability of X=true if (Y=false and Z=true)?
- What is the joint distribution of (X,Y) if Z=false?
- What is the likelihood of some full assignment?
- What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such computation
- Computational cost depends on the topology of the network
- Exact inference:
 - The junction tree algorithm
- Approximate inference:
 - Loopy belief propagation, variational inference, Monte Carlo sampling

Inferential Query 1: Likelihood

Most of the queries one may ask involve evidence
- Evidence X_v is an assignment of values to a set X_v of nodes in the GM over variable set $X = \{X_1, X_2, \ldots, X_n\}$
- Without loss of generality $X_v = \{X_{k+1}, \ldots, X_n\}$
- Write $X_H = X \setminus X_v$ as the set of hidden variables, X_H can be \emptyset or X

Simplest query: compute probability of evidence

$$P(x_v) = \sum_{X_H} P(X_H, X_v) = \sum_{x_1} \ldots \sum_{x_k} P(x_1, \ldots, x_k, x_v)$$

this is often referred to as computing the likelihood of x_v
Inferential Query 2: Conditional Probability

- Often we are interested in the **conditional probability distribution** of a variable given the evidence

\[
P(X_H \mid X_V = x_v) = \frac{P(X_H, x_v)}{P(x_v)} = \sum_{x_u} \frac{P(X_H = x_H \mid x_V)}{P(x_V)}
\]

- this is the *a posteriori belief* in \(X_H\), given evidence \(x_v\).

- We usually query a subset \(Y\) of all hidden variables \(X_H = \{Y, Z\}\) and "don't care" about the remaining, \(Z\):

\[
P(Y \mid x_v) = \sum_z P(Y, Z = z \mid x_v)
\]

- the process of summing out the "don't care" variables \(Z\) is called *marginalization*, and the resulting \(P(Y \mid x_v)\) is called a **marginal prob.**

Applications of *a posteriori* Belief

- **Prediction**: what is the probability of an outcome given the starting condition

- **Diagnosis**: what is the probability of disease/fault given symptoms

- **Learning** under partial observation

 - fill in the unobserved values under an "EM" setting (more later)

- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM

 - probabilistic inference can combine evidence form all parts of the network
Inferential Query 3: Most Probable Assignment

- In this query we want to find the most probable joint assignment (MPA) for some variables of interest.

- Such reasoning is usually performed under some given evidence x_v, and ignoring (the values of) other variables Z:

$$Y^* | x_v = \arg \max_y P(Y | x_v) = \arg \max_z \sum_z P(Y, Z = z | x_v)$$

- this is the maximum a posteriori configuration of Y.

Complexity of Inference

Thm:
Computing $P(X_{H=x_H}| x_v)$ in an arbitrary GM is NP-hard

- Hardness does not mean we cannot solve inference
- It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
- For particular families of GMs, we can have provably efficient procedures
Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - Belief propagation
 - The junction tree algorithms (but will not cover in detail here)

- Approximate inference techniques
 - Variational algorithms
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods

A signal transduction pathway:

What is the likelihood that protein E is active?

Query: \(P(e) \)

\[
P(e) = \sum_d \sum_c \sum_b \sum_a P(a, b, c, d, e)
\]

By chain decomposition, we get

\[
P(e) = \sum_d \sum_c \sum_b \sum_a P(a)P(b \mid a)P(c \mid b)P(d \mid c)P(e \mid d)
\]

A naïve summation needs to enumerate over an exponential number of terms.
Elimination on Chains

- Rearranging terms ...

\[
P(e) = \sum_d \sum_c \sum_b \sum_a P(a)P(b \mid a)P(c \mid b)P(d \mid c)P(e \mid d)
= \sum_d \sum_c \sum_b P(c \mid b)P(d \mid c)P(e \mid d) \sum_a P(a)P(b \mid a)
\]

This summation "eliminates" one variable from our summation argument at a "local cost".
Elimination in Chains

- Rearranging and then summing again, we get

\[P(e) = \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b) \]

\[= \sum_{d} \sum_{c} P(d \mid c) P(e \mid d) \sum_{b} P(c \mid b) p(b) \]

\[= \sum_{d} \sum_{c} P(d \mid c) P(e \mid d) p(c) \]

Elimination in Chains

- Eliminate nodes one by one all the way to the end, we get

\[P(e) = \sum_{d} P(e \mid d) p(d) \]

- Complexity:
 - Each step costs \(O(|Val(X_i)| \cdot |Val(X_{i+1})|)\) operations: \(O(nk^2)\)
 - Compare to naïve evaluation that sums over joint values of \(n-1\) variables \(O(k^n)\)
Hidden Markov Model

\[p(x, y) = p(x_1, \ldots, x_T, y_1, \ldots, y_T) \]
\[= p(y_1) p(x_1 \mid y_1) p(y_2 \mid y_1) p(x_2 \mid y_2) \ldots p(y_T \mid y_{T-1}) p(x_T \mid y_T) \]

Conditional probability:
\[
p(y_t \mid x_1, \ldots, x_T) = \sum_{y_1} \cdots \sum_{y_{t-1}} \sum_{y_{t+1}} \cdots \sum_{y_T} \sum_{y_1} \cdots \sum_{y_{t-1}} \sum_{y_{t+1}} \cdots \sum_{y_T} p(y_t \mid y_t, x_1, \ldots, x_T)
\]
\[
= \sum_{y_1} \cdots \sum_{y_{t-1}} \sum_{y_{t+1}} \cdots \sum_{y_T} p(y_t) p(x_t \mid y_t) \ldots p(y_{t-1} \mid y_{t-1}) p(x_{t-1} \mid y_{t-1})
\]

© Eric Xing @ CMU, 2006-2011
Inference on General BN via Variable Elimination

General idea:

- Write query in the form
 \[P(X_1, \boldsymbol{e}) = \sum_{x_1} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i) \]

 this suggests an "elimination order" of latent variables to be marginalized

- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

- wrap-up
 \[P(X_1 \mid \boldsymbol{e}) = \frac{P(X_1, \boldsymbol{e})}{P(\boldsymbol{e})} \]

The Sum-Product Operation

- In general, we can view the task at hand as that of computing the value of an expression of the form:
 \[\sum_{\phi \in \mathcal{F}} \prod \phi \]

 where \(\mathcal{F} \) is a set of factors

- We call this task the sum-product inference task.
Outcome of elimination

- Let X be some set of variables, let \mathcal{F} be a set of factors such that for each $\phi \in \mathcal{F}$, $\text{Scope}[\phi] \subseteq X$, let $Y \subseteq X$ be a set of query variables, and let $Z = X - Y$ be the variable to be eliminated.

- The result of eliminating the variable Z is a factor

$$\tau(Y) = \sum_{Z} \prod_{\phi \in \mathcal{F}} \phi$$

- This factor does not necessarily correspond to any probability or conditional probability in this network. (example forthcoming)

Dealing with evidence

- Conditioning as a Sum-Product Operation

 - The evidence potential:
 $$\delta(E_i, e_i) = \begin{cases} 1 & \text{if } E_i = e_i \\ 0 & \text{if } E_i \neq e_i \end{cases}$$

 - Total evidence potential:
 $$\delta(E, \bar{e}) = \prod_{i \in \mathcal{X}} \delta(E_i, \bar{e}_i)$$

 - Introducing evidence --- restricted factors:
 $$\tau(Y, \bar{e}) = \sum_{Z \subseteq X} \prod_{\phi \in \mathcal{F}} \phi \times \delta(E, \bar{e})$$
The elimination algorithm

Procedure Elimination (G, // the GM
E, // evidence
Z, // Set of variables to be eliminated
X, // query variable(s)
)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (\mathcal{F}, Z, <)
4. Normalization (\mathcal{F})

Procedure Initialize (G, Z)
1. Let Z_1, \ldots, Z_k be an ordering of Z such that $Z_i < Z_j$ iff $i < j$
2. Initialize \mathcal{F} with the full set of factors

Procedure Evidence (E)
1. for each $i \in E$
 $\mathcal{F} = \mathcal{F} \cup \delta(E_i, e_i)$

Procedure Sum-Product-Variable-Elimination (\mathcal{F}, Z, <)
1. for $i = 1, \ldots, k$
 $\mathcal{F} \leftarrow$ Sum-Product-Eliminate-Var(\mathcal{F}, Z_i)
2. $\phi \leftarrow \prod_{\phi \in \mathcal{F}} \phi$
3. return ϕ
4. Normalization (ϕ)
The elimination algorithm

Procedure Initialize \((G, Z)\)
1. Let \(Z_1, \ldots, Z_k\) be an ordering of \(Z\) such that \(Z_i < Z_j\) iff \(i < j\)
2. Initialize \(\mathcal{F}\) with the full set of factors

Procedure Evidence \((E)\)
1. for each \(i \in E\)
 \(\mathcal{F} = \mathcal{F} \cup \delta(E, e_i)\)

Procedure Sum-Product-Variable-Elimination \((\mathcal{F}, Z, <)\)
1. for \(i = 1, \ldots, k\)
 \(\mathcal{F} = \text{Sum-Product-Eliminate-Var}(\mathcal{F}, Z_i)\)
2. \(\phi' \leftarrow \prod_{\phi \in \mathcal{F}} \phi\)
3. return \(\phi'\)
4. Normalization \((\phi')\)

Procedure Normalization \((\phi')\)
1. \(P(\lambda|E) = \phi'(\lambda)\sum_x \phi'(x)\)

Procedure Sum-Product-Eliminate-Var \((\mathcal{F}, Z, <)\)
1. for each \(i \in I\)
 \(\mathcal{F} = \mathcal{F} \cup \delta(E, e_i)\)

Procedure Evidence \((E)\)
1. for each \(i \in E\)
 \(\mathcal{F} = \mathcal{F} \cup \delta(E, e_i)\)

Procedure Sum-Product-Variable-Eliminate-Var \((\mathcal{F}, Z_i)\)
1. \(\mathcal{F}' \leftarrow \{\phi \in \mathcal{F} : Z \in \text{Scope}([\phi])\}\)
2. \(\mathcal{F}'' \leftarrow \mathcal{F} - \mathcal{F}'\)
3. \(\psi \leftarrow \prod_{\phi \in \mathcal{F}'} \phi\)
4. \(\tau \leftarrow \sum_x \psi\)
5. return \(\mathcal{F}'' \cup \{\tau\}\)

From elimination to message passing

- Recall ELIMINATION algorithm:
 - Choose an ordering \(Z\) in which query node \(f\) is the final node
 - Place all potentials on an active list
 - Eliminate node \(i\) by removing all potentials containing \(i\), take sum/product over \(x_i\)
 - Place the resultant factor back on the list

- For a TREE graph:
 - Choose query node \(f\) as the root of the tree
 - View tree as a directed tree with edges pointing towards from \(f\)
 - Elimination ordering based on depth-first traversal
 - Elimination of each node can be considered as message-passing (or Belief Propagation) directly along tree branches, rather than on some transformed graphs
 - thus, we can use the tree itself as a data-structure to do general inference!!
Let $m_{ij}(x_i)$ denote the factor resulting from eliminating variables from below up to i, which is a function of x_i:

$$m_{ij}(x_i) = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j) \right)$$

This is reminiscent of a message sent from j to i.

$m_{ij}(x_i)$ represents a "belief" of x_i from x_j.

Elimination on trees is equivalent to message passing along tree branches!
The message passing protocol:

- A two-pass algorithm:

\[
\begin{align*}
X_1 & \quad m_{21}(X_1) \quad m_{12}(X_2) \\
X_2 & \quad m_{32}(X_2) \quad m_{42}(X_2) \\
X_3 & \quad m_{23}(X_3) \quad m_{24}(X_4) \\
X_4 & \\
\end{align*}
\]

Belief Propagation (SP-algorithm):
Sequential implementation

```
SUBPRODUCT(T, E)
EVIDENCE(E)
for i in E:
    φ_i(x_i) = φ(x_i)(x_i, E)
for i that does not exist in E:
    φ_i(x_i) = φ(x_i)
COLLECT(E)
for i ∈ V:
    SENDMESSAGE(i, e)
    for e ∈ V:
        COMPUTEMARGINAL(e)

EVIDENCE(E)
for i in E:
    ϕ_i(x_i) = φ(x_i)(x_i, E)
for i that does not exist in E:
    ϕ_i(x_i) = φ(x_i)
COLLECT(E)
for i ∈ V:
    SENDMESSAGE(i, e)
    for e ∈ V:
        COMPUTEMARGINAL(e)

SENDMESSAGE(i, e)
for e ∈ V:
    for j ∈ N(i):
        m_{ij}(x_j) = \sum_{x_i} φ_i(x_i)φ_j(x_i, x_j) \prod_{k ∈ N(i) \setminus \{j\}} m_{ik}(x_k)

COMPUTEMARGINAL(j)
\phi_j(x_j) = \sum_{x_i} ϕ_i(x_i) \prod_{j ∈ V \setminus \{i\}} m_{ij}(x_j)
```

© Eric Xing @ CMU, 2006-2011
Belief Propagation (SP-algorithm): Parallel synchronous implementation

- For a node of degree d, whenever messages have arrived on any subset of $d-1$ node, compute the message for the remaining edge and send!
- A pair of messages have been computed for each edge, one for each direction
- All incoming messages are eventually computed for each node

Correctness of BP on tree

- Corollary: the synchronous implementation is "non-blocking"

- Thm: The Message Passage Guarantees obtaining all marginals in the tree

$$m_{ji}(x_i) = \sum_{x_j} \psi(x_j) \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j)$$

- What about non-tree?
Inference on general GM

- Now, what if the GM is not a tree-like graph?
- Can we still directly run message-passing protocol along its edges?
- For non-trees, we do not have the guarantee that message-passing will be consistent!
- Then what?
 - Construct a graph data-structure from P that has a tree structure, and run message-passing on it!

\rightarrow Junction tree algorithm

A Sketch of the Junction Tree Algorithm

- The algorithm
 - Construction of junction trees --- a special clique tree
 - Propagation of probabilities --- a message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A generic exact inference algorithm for any GM
- Complexity: exponential in the size of the maximal clique --- a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT
- Many well-known algorithms are special cases of JT
 - Forward-backward, Kalman filter, Peeling, Sum-Product …
The Shafer Shenoy Algorithm

- Shafer-Shenoy algorithm

\[\mu_{i \rightarrow j} = \sum_{C_i \cap j} \psi_{C_i} \prod_{k \neq j} \mu_{k \rightarrow i}(S_k) \]

- Clique marginal

\[p(C_i) = \sum_{C_i \cap j} \mu_{C_i} \prod_{k \neq j} \mu_{k \rightarrow i}(S_k) \]

The Junction tree algorithm for HMM

- A junction tree for the HMM

 \[
 \begin{align*}
 &\psi(y_1, x_1) \\
 &\psi(y_2, x_2) \\
 &\psi(y_3, x_3) \\
 &\vdots \\
 &\psi(y_T, x_T)
 \end{align*}
 \]

- Rightward pass

\[
\mu_{x_{t-1}}(y_{t-1}) = \sum_{y_t} \psi(y_t, y_{t-1}) \mu_{x_{t-1}}(y_t) \mu_{x_t}(y_{t-1})
\]

\[
= \sum_{y_t} p(y_{t+1} | y_t) \mu_{x_{t-1}}(y_t) p(x_{t-1} | y_{t-1})
\]

\[
= p(x_{t-1} | y_{t-1}) \sum_{y_t} a_{x_{t-1} x_{t}} \mu_{x_{t-1}}(y_t)
\]

- This is exactly the forward algorithm!

- Leftward pass ...

\[
\mu_{x_{t+1}}(y_t) = \sum_{y_{t+1}} \psi(y_{t+1}, y_t) \mu_{x_{t+1}}(y_{t+1}) \mu_{x_t}(y_{t+1})
\]

\[
= \sum_{y_{t+1}} p(x_{t+1} | y_{t+1}) \mu_{x_{t+1}}(y_{t+1}) p(x_{t} | y_{t+1})
\]

- This is exactly the backward algorithm!
Summary

- The simple Eliminate algorithm captures the key algorithmic operation underlying probabilistic inference: that of taking a sum over product of potential functions.

- The computational complexity of the Eliminate algorithm can be reduced to purely graph-theoretic considerations.

- This graph interpretation will also provide hints about how to design improved inference algorithms.

- What can we say about the overall computational complexity of the algorithm? In particular, how can we control the "size" of the summands that appear in the sequence of summation operation.

Extra reading:
From Elimination to JT on a general Bayesian network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

Example: Variable Elimination

- Query: $P(A \mid h)$
 - Need to eliminate: B,C,D,E,F,G,H

- Initial factors:
 $$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$

- Choose an elimination order: H,G,F,E,D,C,B

- Step 1:
 - Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., \tilde{h})):
 $$m_{\tilde{h}}(e, f) = p(h = \tilde{h} \mid e, f)$$
 - This step is isomorphic to a marginalization step:
 $$m_{\tilde{h}}(e, f) = \sum_{h} p(h \mid e, f)\delta(h = \tilde{h})$$
Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B, C, D, E, F, G \)

- Initial factors:
 \[
P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)
\]
 \[\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)\]

- Step 2: Eliminate \(G \)
 - compute
 \[
m_g(e) = \sum g \ p(g \mid e) = 1
\]
 \[
 \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_g(e, f)
 = P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)m_g(e, f)
\]

Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B, C, D, E, F \)

- Initial factors:
 \[
P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)
\]
 \[\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)\]

- Step 3: Eliminate \(F \)
 - compute
 \[
m_f(e, a) = \sum f \ p(f \mid a)m_h(e, f)
\]
 \[
 \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)m_f(a, e)
\]
Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B,C,D,E \)

- Initial factors:
 \[
P(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)p(g \mid e)p(h \mid e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)p(g \mid e)m_s(e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)m_s(e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)m_f(a, e)
\]

- Step 4: Eliminate \(E \)
 - compute
 \[
m_e(a, c, d) = \sum_{e} p(e \mid c, d)m_f(a, e)
\]

- Step 5: Eliminate \(D \)
 - compute
 \[
m_d(a, c) = \sum_{d} p(d \mid a)m_e(a, c, d)
\]

Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B,C,D \)

- Initial factors:
 \[
P(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)p(g \mid e)p(h \mid e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)p(g \mid e)m_s(e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)p(f \mid a)m_s(e, f)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)p(e \mid c, d)m_f(a, e)
\Rightarrow p(a)p(b)p(c \mid b)p(d \mid a)m_f(a, c, d)
\]

- Step 5: Eliminate \(D \)
 - compute
 \[
m_d(a, c) = \sum_{d} p(d \mid a)m_e(a, c, d)
\]
Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B,C \)

- Initial factors:

 \[
P(a)p(b)p(c \mid d)p(d \mid a)p(e \mid c,d)p(f \mid a)p(g \mid e)p(h \mid e, f)
 \]

 \[
 \Rightarrow P(a)p(b)p(c \mid d)p(d \mid a)p(e \mid c,d)p(f \mid a)p(g \mid e)m_i(e, f)
 \]

 \[
 \Rightarrow P(a)p(b)p(c \mid d)p(d \mid a)p(e \mid c,d)m_j(a, e)
 \]

 \[
 \Rightarrow P(a)p(b)p(c \mid d)p(d \mid a)m_j(a, c, d)
 \]

 \[
 \Rightarrow P(a)p(b)p(c \mid d)m_i(a, c)
 \]

- Step 6: Eliminate \(C \)
 - Compute

 \[
 m_j(a,b) = \sum_c p(c \mid b) m_j(a, c)
 \]

 \[
 \Rightarrow P(a)p(b)p(c \mid d)m_j(a, c)
 \]

- Step 7: Eliminate \(B \)
 - Compute

 \[
 m_i(a) = \sum_b p(b) m_j(a, b)
 \]

 \[
 \Rightarrow P(a)m_i(a)
 \]
Example: Variable Elimination

- Query: \(P(B | h) \)
 - Need to eliminate: \(B \)

- Initial factors:

 \[
 P(a)P(b)P(c | d)P(d | a)P(e | c,d)P(f | a)P(g | e)P(h | e, f) \\
 \Rightarrow P(a)P(b)P(c | d)P(d | a)P(e | c,d)P(f | a)P(g | e)m_e(a, e) \\
 \Rightarrow P(a)P(b)P(c | d)P(d | a)P(e | c,d)m_e(a, c, d) \\
 \Rightarrow P(a)P(b)P(c | d)m_e(a, c) \\
 \Rightarrow P(a)P(b)m_e(a, b) \\
 \Rightarrow P(a)m_e(a)
 \]

- Step 8: Wrap-up

 \[
 p(a, \tilde{h}) = p(a)m_e(a), \quad p(\tilde{h}) = \sum_a p(a)m_e(a) \\
 \Rightarrow P(a | \tilde{h}) = \frac{p(a)m_e(a)}{\sum_a p(a)m_e(a)}
 \]

Complexity of variable elimination

- Suppose in one elimination step we compute

 \[
 m_x(y_1, \ldots, y_k) = \sum_x m'_x(x, y_1, \ldots, y_k) \\
 m'_x(x, y_1, \ldots, y_k) = \prod_{i=1}^k m_i(x, y_i)
 \]

 This requires

 - \(k \cdot |\text{Val}(X)| \cdot \prod_{i} |\text{Val}(Y_i)| \) multiplications

 - For each value of \(x, y_1, \ldots, y_k \) we do \(k \) multiplications

 - \(|\text{Val}(X)| \cdot \prod_{i} |\text{Val}(Y_i)| \) additions

 - For each value of \(y_1, \ldots, y_k \), we do \(/\text{Val}(X)/ \) additions

 Complexity is exponential in number of variables in the intermediate factor
Elimination Cliques

Understanding Variable Elimination

- A graph elimination algorithm
 - Intermediate terms correspond to the cliques resulted from elimination
 - "good" elimination orderings lead to small cliques and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - finding the optimum ordering is NP-hard, but for many graph optimum or near-optimum can often be heuristically found
 - Applies to undirected GMs
Recall that induced dependency during marginalization is captured in elimination cliques:

- Summation \leftrightarrow elimination
- Intermediate term \leftrightarrow elimination clique

\[
P(a) P(b) P(c|b) P(d|a) P(e|c, d) P(f|a) P(g|e) P(h|e, f) \\
\Rightarrow P(a) P(b) P(c|b) P(d|a) P(e|c, d) P(f|a) P(g|e) \phi_0(e, f) \\
\Rightarrow P(a) P(b) P(c|b) P(d|a) P(e|c, d) P(f|a) \phi_0(e) \phi_0(e, f) \\
\Rightarrow P(a) P(b) P(c|b) P(d|a) P(e|c, d) \phi_7(a, e) \\
\Rightarrow P(a) P(b) P(c|b) P(d|a) \phi_5(a, c, d) \\
\Rightarrow P(a) P(b) P(c|b) \phi_5(a, c) \\
\Rightarrow P(a) P(b) \phi_0(a, b) \\
\Rightarrow P(a) \phi_0(a) \\
\Rightarrow \phi(a)
\]

Can this lead to a generic inference algorithm?
From Elimination to Message Passing

- Elimination = message passing on a **clique tree**

\[m_x(a, c, d) = \sum_{e} p(e | c, d) m_y(e)m_z(a, e) \]

- Messages can be reused

From Elimination to Message Passing

- Elimination = message passing on a **clique tree**
 - Another query ...

- Messages \(m_f \) and \(m_h \) are reused, others need to be recomputed
The Shafer Shenoy Algorithm

- Shafer-Shenoy algorithm

\[\mu_{ij} = \sum_{C_j \cup \mathcal{S}_j} \psi_{C_i, C_j} \prod_{k \in \mathcal{S}_j} \mu_{k \rightarrow i}(S_{kj}) \]

- Message from clique \(i \) to clique \(j \):

\[p(C_i) = \psi_{C_i} \prod_{k \in \mathcal{S}_j} \mu_{k \rightarrow i}(S_{kj}) \]

- Clique marginal

A Sketch of the Junction Tree Algorithm

- The algorithm
 - Construction of junction trees --- a special clique tree
 - Propagation of probabilities --- a message-passing protocol

- Results in marginal probabilities of all cliques --- solves all queries in a single run

- A generic exact inference algorithm for any GM

- Complexity: exponential in the size of the maximal clique --- a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT

- Many well-known algorithms are special cases of JT

 - Forward-backward, Kalman filter, Peeling, Sum-Product ...

© Eric Xing @ CMU, 2006-2011