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Recall HMM
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What is a Bayesian Network?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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Representation: what is the joint probability dist. on multiple 
variables?

Recap of Basic Prob. Concepts

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?

Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
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Where do we put domain knowledge in terms of plausible relationships between 
variables, and plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?

Computing p(H|A) would require summing over all 26 configurations of the 
unobserved variables

4© Eric Xing @ CMU, 2006-2011



3

What is a Bayesian Network?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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BN: Structure Simplifies 
Representation

Dependencies among variables
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If Xi's are conditionally independent (as described by a BN), the 
joint can be factored to a product of simpler terms, e.g., 

Bayesian Network

Why we may favor a BN?

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Representation cost: how many probability statements are needed? 

Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic semantics

Incorporation of domain knowledge and causal (logical) structures

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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Bayesian Network: Factorization Theorem

P(X1, X2, X3, X4, X5, X6, X7, X8)
Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

Theorem: 
Given a DAG, The most general form of the probability distribution 

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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g p y
that is consistent with the (probabilistic independence properties 
encoded in the) graph factors according to “node given its parents”:

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.
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Example: a pedigree of people
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Specification of a BN
There are two components to any GM:

the qualitative specificationq p
the quantitative specification
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Qualitative Specification
Where does the qualitative specification come from?

Prior knowledge of causal relationships
Prior knowledge of modular relationships
Assessment from experts
Learning from data
We simply link a certain architecture (e.g. a layered graph) 
…

11© Eric Xing @ CMU, 2006-2011

B

Local Structures & 
Independencies

Common parent
Fixing B decouples A and C

A CB

A C
g p

"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure A

C

BV-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!

12© Eric Xing @ CMU, 2006-2011
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A simple justification
B

A C
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Graph separation criterion
D-separation criterion for Bayesian networks (D for Directed 
edges):g )

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:Example:

14© Eric Xing @ CMU, 2006-2011
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Structure: DAG Ancestor

Local Markov properties of DAGs

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the

X

Y1 Y2

Parent

distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

Descendent

Children's co-parentChildren's co-parent

Child

15© Eric Xing @ CMU, 2006-2011

Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

{ });(dsep:)(I YZXYZXG G⊥=

16© Eric Xing @ CMU, 2006-2011
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Example: 
Complete the I(G) of this 
graph:x4

x1

x3

x2

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specification of 
probability distribution

Separation properties in the graph imply independence 
properties about the associated variablesp p
For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

The Equivalence Theorem
For a graph GFor a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.

18© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

A B

C

p(A,B,C) = 

19© Eric Xing @ CMU, 2006-2011

a0 0.75
a1 0 25

b0 0.33
b1 0 67

P(a,b,c.d) = 

Conditional probability tables 
(CPTs)

a1 0.25 b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0 55 0 0 1 0 3

A B

P(a)P(b)P(c|a,b)P(d|c)

c1 0.55 0 0.1 0.3C

D
c0 c1

d0 0.3 0.5
d1 07 0.5
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P(a,b,c.d) = 
A N(µ Σ ) B N( Σ )

Conditional probability density 
func. (CPDs)

A B

P(a)P(b)P(c|a,b)P(d|c)A~N(µa, Σa) B~N(µb, Σb)

)C

D

C~N(A+B, Σc)

D~N(µa+C, Σa)
D

C
P(

D|
 C

)
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Conditional Independencies

X1

Y

Features

Label

X2 Xn-1 Xn

What is this model

1. When Y is observed?
2. When Y is unobserved?

22© Eric Xing @ CMU, 2006-2011
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Conditionally Independent 
Observations

θ Model parameters

Data = {y1,…yn}X1 X2 Xn-1 Xn

23© Eric Xing @ CMU, 2006-2011

“Plate” Notation

θ Model parameters

Xi

i=1:n

Data = {x1,…xn}

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

24© Eric Xing @ CMU, 2006-2011
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Example: Gaussian Model

µ Generative model:   σ

xi

i=1:n

p(x1,…xn | µ, σ) = P p(xi | µ, σ)
=   p(data | parameters)
=   p(D  | θ)     

where θ = {µ, σ}

Likelihood = p(data | parameters)Likelihood = p(data | parameters) 
= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters

Often easier to work with log L (θ) 
25© Eric Xing @ CMU, 2006-2011

Bayesian models

xi

θ

i=1:n

26© Eric Xing @ CMU, 2006-2011
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Density estimation m s

More examples

Density estimation

Regression

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric
X Y

m,s

X X

Classification
Generative and discriminative approach

Q

X

Q

X

27© Eric Xing @ CMU, 2006-2011

Example, con'd
Evolution

ancestor

Qh Qm
T years

?

AGAGAC
A C

AGAGAC

Tree Model

28© Eric Xing @ CMU, 2006-2011
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Example, con'd
Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

29© Eric Xing @ CMU, 2006-2011

Example, con'd
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An 
(incomplete) 

genealogy g gy
of BNs

(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)
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BN and Graphical Models
A Bayesian network is a special case of Graphical Models

A G hi l M d l f t f il f di t ib ti t fA Graphical Model refers to a family of distributions on a set of 
random variables that are compatible with all the probabilistic 
independence propositions encoded by a graph that connects these 
variables

It is a smart way to write/specify/compose/design exponentially-large 
probability distributions without paying an exponential cost, and at 
the same time endow the distributions with structured semantics
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Summary
Represent dependency structure with a directed acyclic graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Plate representation
A BN is a database of prob. Independence statement on variables 

The factorization theorem of the joint probability
Local specification globally consistent distribution

fLocal representation for exponentially complex state-space

Support efficient inference and learning

33© Eric Xing @ CMU, 2006-2011
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Inference and Learning
We now have compact representations of probability 
distributions:  BN

A BN M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.

35© Eric Xing @ CMU, 2006-2011

Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?

Probabilistic Inference

What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such 
computation 

C t ti l t d d th t l f th t kComputational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 

36© Eric Xing @ CMU, 2006-2011



19

Inferential Query 1: 
Likelihood

Most of the queries one may ask involve evidence

Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

Without loss of generality Xv={Xk+1, … , Xn}, 

Write XH=X\Xv as the set of hidden variables, XH can be ∅ or X

Simplest query: compute probability of evidence

∑ ∑ )(),,()(
1

1
x x

k
k

,,x,xPPP v
x

vHv xXXx
H

KK== ∑

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  xv

37© Eric Xing @ CMU, 2006-2011

Often we are interested in the conditional probability 
distribution of a variable given the evidence

Inferential Query 2: 
Conditional Probability

g

this is the a posteriori belief in XH, given evidence xv

We usually query a subset Y of all hidden variables X ={Y Z}

∑ =
===

Hx
VHH

VH

V

VH
VVH xxX

xX
x

xXxXX
),(

),(
)(

),()|(
P
P

P
PP

We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.

∑ ==
z

VV xzZYxY )|,()|( PP
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Prediction: what is the probability of an outcome given the starting 
condition

A CB
?

Applications of a posteriori Belief

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

A CB

A CB
?

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not 
restricted by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
39© Eric Xing @ CMU, 2006-2011

In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Inferential Query 3: 
Most Probable Assignment

Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

∑ ===
z

VyVyV xzZYxYxY )|,(maxarg)|(maxarg|* PP

this is the maximum a posteriori configuration of Y.

z

40© Eric Xing @ CMU, 2006-2011
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Thm:
C ti P(X | ) i bit GM i NP h d

Complexity of Inference

Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that worksIt implies that we cannot find a general procedure that works 
efficiently for arbitrary GMs
For particular families of GMs, we can have provably efficient 
procedures

41© Eric Xing @ CMU, 2006-2011

Approaches to inference

Exact inference algorithms

The elimination algorithm
Belief propagation
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Variational algorithms 
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods

42© Eric Xing @ CMU, 2006-2011
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A signal transduction pathway:

B C ED

Marginalization and Elimination

Query: P(e)

A B C ED

∑∑∑∑=
d c b a

e)P(a,b,c,d,eP )(

What is the likelihood that protein E is active?

By chain decomposition, we get

∑∑∑∑=
d c b a

dePcdPbcPabPaP )|()|()|()|()(

a naïve summation needs to 
enumerate over an exponential 
number of  terms

43© Eric Xing @ CMU, 2006-2011

A B C ED

Elimination on Chains

A B C ED

Rearranging terms ...

∑∑∑ ∑

∑∑∑∑
=

=

d c b a

d c b a

abPaPdePcdPbcP

dePcdPbcPabPaPeP

)|()()|()|()|(

)|()|()|()|()()(
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A B C EDX

Elimination on Chains

Now we can perform innermost summation

A B C EDX

∑∑∑

∑∑∑ ∑=
d c b a

bdPdPbP

abPaPdePcdPbcPeP

)()|()|()|(

)|()()|()|()|()(

This summation "eliminates" one variable from our 
summation argument at a "local cost".

∑∑∑=
d c b

bpdePcdPbcP )()|()|()|(
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A B C EDX X

Elimination in Chains

A B C ED

∑∑∑= bpdePcdPbcPeP )()|()|()|()(

X X
Rearranging and then summing again, we get

∑∑

∑∑ ∑

∑∑∑

=

=

d c

d c b

d c b

cpdePcdP

bpbcPdePcdP

)()|()|(

)()|()|()|(

|||
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A B C EDX X X X

Elimination in Chains

Eliminate nodes one by one all the way to the end, we get

∑ dpdePeP )()|()(

A B C EDX X X X

Complexity:
Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(nk2)
Compare to naïve evaluation that sums over joint values of n-1 variables O(kn)

∑=
d

dpdePeP )()|()(
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General idea:
Write query in the form

Inference on General BN via 
Variable Elimination

Write query in the form

this suggests an "elimination order" of latent variables to be marginalized  

Iteratively

Move all irrelevant terms outside of innermost sum

∑ ∑∑∏=
nx x x i

ii paxPXP
3 2

1 )|(),( Le

Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up

)(
),()|(

e
ee

P
XPXP 1

1 =
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From elimination to message 
passing

Recall ELIMINATION algorithm:
Choose an ordering Z in which query node f is the final node
Place all potentials on an active list
Eliminate node i by removing all potentials containing i, take sum/product over xi.
Place the resultant factor back on the list

For a TREE graph:
Choose query node f as the root of the tree
View tree as a directed tree with edges pointing towards from f
Elimination ordering based on depth first traversalElimination ordering based on depth-first traversal
Elimination of each node can be considered as 
message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs
thus, we can use the tree itself as a data-structure to do general inference!!

49© Eric Xing @ CMU, 2006-2011

f

Message passing for trees

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow f

i

j

up to i, which is a function of xi:

This is reminiscent of a message sent 
from j to i.

j

k l
mij(xi) represents a "belief" of xi from 
xj!

50© Eric Xing @ CMU, 2006-2011
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Elimination on trees is equivalent to message passing along 
tree branches!

f

i

j

k l
51© Eric Xing @ CMU, 2006-2011

The message passing protocol:
A two-pass algorithm:

X1

m21(X1) m12(X2)

m24(X4)

X2

X3
X4

m32(X2) m42(X2)

m23(X3)

52© Eric Xing @ CMU, 2006-2011
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Belief Propagation (SP-algorithm): 
Sequential implementation

53© Eric Xing @ CMU, 2006-2011

Belief Propagation (SP-algorithm): 
Parallel synchronous implementation

For a node of degree d, whenever messages have arrived on any subset of d-1 node, 
compute the message for the remaining edge and send!

A pair of messages have been computed for each edge, one for each direction
All incoming messages are eventually computed for each node

54© Eric Xing @ CMU, 2006-2011
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Correctness of BP on tree

Collollary: the synchronous implementation is "non-blocking"Collollary: the synchronous implementation is non-blocking

Thm: The Message Passage Guarantees obtaining all 
marginals in the tree

What about non-tree?

55© Eric Xing @ CMU, 2006-2011

Inference on general GM
Now, what if the GM is not a tree-like graph?

Can we still directly run message 
message-passing protocol along its edges?

For non-trees, we do not have the guarantee that message-passing 
will be consistent!

Then what?
Construct a graph data-structure from P that has a tree structure, and run message-passing 
on it!

Junction tree algorithm

56© Eric Xing @ CMU, 2006-2011



29

A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique treeConstruction of junction trees a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...

57© Eric Xing @ CMU, 2006-2011

The Shafer Shenoy Algorithm
Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
∑ ∏

≠
→→ =

iji

i
SC jk

kiikCji S
\

)(µψµ

∏ →∝
k

kiikCi SCp
i

)()( µψ
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The Junction tree algorithm for HMM
A junction tree for the HMM

y2 y3y1 yT...

),( 11 xyψ ),( 21 yyψ ),( 32 yyψ ),( TT yy 1−ψ

)(yφ )(yφ

Rightward pass

A AA Ax2 x3x1 xT

... 

... 

),( 22 xyψ ),( 33 xyψ ),( TT xyψ

)( 2yζ )( 3yζ )( Tyζ
)( 1yφ )( 2yφ⇒⇒

),( 1+tt yyψ)( ttt y→−1µ )( 11 ++→ ttt yµ

)( 1+↑ tt yµ
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∑
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+
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tt

t

tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(
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1
µ

µ
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ty

tttttttttt yyyyy )()(),()( 11111 µµψµ

This is exactly the forward algorithm!

Leftward pass …

This is exactly the backward algorithm! 

),( 11 ++ tt xyψ

∑
+

+↑++←+←− =
1

11111
ty

tttttttttt yyyyy )()(),()( µµψµ

∑ +

t

tt
y

yy , 1

∑
+
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1

11111
ty

ttttttt yxpyyyp )|()()|( µ

),( 1+tt yyψ)( ttt y←−1µ )( 11 ++← ttt yµ

),( 11 ++ tt xyψ

)( 1+↑ tt yµ
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Summary
The simple Eliminate algorithm captures the key algorithmic 
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

This graph interpretation will also provide hints about how to design 
improved inference algorithmsimproved inference algorithms 

What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 
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Extra reading:

© Eric Xing @ CMU, 2006-2011 61

A food web

From Elimination to JT on a 
general Bayesian network

B A

DC

E F

G H

What is the probability that hawks are leaving given that the grass condition is poor?
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Query: P(A |h)
Need to eliminate: B,C,D,E,F,G,H

B A

Example: Variable Elimination

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh ==
h~

∑ ==
h

h hhfehpfem )~(),|(),( δ

B A

DC

E F

G
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Query: P(B |h)
Need to eliminate: B,C,D,E,F,G

B A

Example: Variable Elimination

Initial factors:

Step 2: Eliminate G

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h⇒

Step 2: Eliminate G
compute

1)|()( == ∑
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg

=

⇒
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Query: P(B |h)
Need to eliminate: B,C,D,E,F

B A

Example: Variable Elimination

Initial factors:

Step 3: Eliminate F

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 3: Eliminate F
compute

∑=
f

hf femafpaem ),()|(),(

),(),|()|()|()()( eamdcePadPbcPbPaP f⇒

B A

DC

E
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Query: P(B |h)
Need to eliminate: B,C,D,E

B A

Example: Variable Elimination

Initial factors:

Step 4: Eliminate E

DC

E F

G H
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

⇒
⇒
⇒

B A

DC

E

Step 4: Eliminate E
compute

∑=
e

fe eamdcepdcam ),(),|(),,(

),,()|()|()()( dcamadPbcPbPaP e⇒

B A

DC
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Query: P(B |h)
Need to eliminate: B,C,D

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 5: Eliminate D
compute ∑=

d
ed dcamadpcam ),,()|(),(

),()|()()( camdcPbPaP d⇒

B A

C
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Query: P(B |h)
Need to eliminate: B,C

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 6: Eliminate C
compute

),()|()()( camdcPbPaP d⇒

∑=
c

dc cambcpbam ),()|(),(

),()|()()( camdcPbPaP d⇒

B A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 7: Eliminate B
compute

),()()(
),()|()()(

bambPaP
camdcPbPaP

c

d

⇒
⇒

∑=
b

cb bambpam ),()()(

)()( amaP b⇒

A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 8: Wrap-up
)()(

),()()(
),()|()()(

amaP
bambPaP

camdcPbPaP

b

c

d

⇒
⇒
⇒

, )()()~,( amaphap b=

∑
=⇒

a
b

b

amap
amaphaP

)()(
)()()~|(

∑=
a

b amaphp )()()~(
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Suppose in one elimination step we compute

∑= yyxmyym )(')(

Complexity of variable 
elimination

This requires 
multiplications

─ For each value of x, y1, …, yk, we do k multiplications

∑=
x

kxkx yyxmyym ),,,(),,( 11 KK

∏
=

=
k

i
cikx i

xmyyxm
1

1 ),(),,,(' yK

∏••
i

Ci
Xk )Val()Val( Y

additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor

∏•
i

Ci
X )Val()Val( Y
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Elimination Cliques

B A

DC

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

E F

G

DC

E F

G H

B A

DC

E F

B A

DC

E

G H G

B A

DC

B A

C

B A A

),( femh )(emg ),( aem f ),,( dcame

),( camd ),( bamc )(amb
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Understanding Variable 
Elimination

A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Intermediate terms correspond to the cliques resulted from 
eliminationelimination

“good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 

Applies to undirected GMs
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Recall that Induced dependency during marginalization is 
captured in elimination cliques

Elimination Clique

p q
Summation <-> elimination
Intermediate term <-> elimination clique

B A B A A

Can this lead to an generic 
inference algorithm?

E F

H

A

E F

C

E

G

A

DC

E

A

DC
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A Clique Tree

A

E F

B A

C

A

DC

A

DC

B A A

em
fm

bmcm

dm

E F

H

E

G

E hm
gm

∑=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(

75© Eric Xing @ CMU, 2006-2011

Elimination ≡ message passing on a clique tree

From Elimination to Message 
Passing

A

B A

C

A

A

DC

B A A

fm

bmcm

dm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

≡

d )(

Messages can be reused

E F

H

E F

E

G

A

DC

E hm
gm

em
∑=

e
fg

e

eamemdcep
dcam

),()(),|(
),,(
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From Elimination to Message 
Passing

Elimination ≡ message passing on a clique tree
Another query

A

B A

C

A

A

DC

B A A

cm bm

dm
fm

Another query ...

E F

H

E F

E

G

A

DC

E

gm

em

hm

Messages mf and mh are reused, others need to be recomputed
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The Shafer Shenoy Algorithm
Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
∑ ∏

≠
→→ =

iji

i
SC jk

kiikCji S
\

)(µψµ

∏ →∝
k

kiikCi SCp
i

)()( µψ
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A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique treeConstruction of junction trees a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...
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