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What is a Bayesian Network? sese
--- example from a signal transduction pathway °

e A possible world for cellular signal transduction:

Receptor A X, Receptor B

X2

T % %)

T oA K \iu

v v 0 T,

1 ve -~ T
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Recap of Basic Prob. Concepts o

e Representation: what is the joint probability dist. on multiple

variables?
P(X;, X5, X35, X4, X5, Xe, X7, Xg,)
[ |
e How many state configurations in total? --- 28
e Arethey all needed to be represented? f— — —
e Do we get any scientific/medical insight? -
L [

e Learning: where do we get all this probabilities? ”“W)
e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(HA) would require summing over all 26 configurations of the
unobserved variables
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What is a Bayesian Network?
--- example from a signal transduction pathway

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

TFF X,

[ X X ]
BN: Structure Simplifies sess
Representation o
e Dependencies among variables
Receptor A X, X,
e 'E/'_e_m?_r?'_le_i
X

__________________________________________________________________________________________

Nucleus

© Eric Xing @ CMU, 2006-2011 6




Bayesian Network

a If X{'s are conditionally independent (as described by a BNJ, the
joint can be factored to a product of simpler terms, e.g.,

P(Xy, Xo, X5, Xy, X5, Xe X, Xg)

1
= P(X) P(X,) POG] Xy) PO Xo) P(Xe] X,)
P(Xel X3, X,) P(X7| Xg) P(Xg| X5, Xg)
lf

(Rnmec )% (oo o

o Why we may favor a BN?
= Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
« Exploring the graph structure and probabilistic semantics

= Incorporation of domain knowledge and causal (logical) structures
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Bayesian Network: Factorization Theorem | o

P(Xll XZ’ X3! XA’ x51 XG’ X7' X8)

)%, = P(Xy) P(Xp) P(X4| Xp) P(X,| X;) P(Xg| X5)
P(Xsl X3 X4) P(X7] Xg) P(Xg| Xs, Xs)

N\ 20) = 013
) PLuh) N
e Theorem: qF(Pu;\)

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

PO =TTP(X,IX,)

where X_ is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Example: a pedigree of people

P ) |

e Genetic Pedigree

o000

0000

coee
Specification of a BN °e

e There are two components to any GM:
e the qualitative specification
e the quantitative specification

dlos o1
df oz o8
d| o9 o1
C d]oo1 099
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Qualitative Specification :
L o !
e Where does the qualitative specification come from?
e Prior knowledge of causal relationships
e Prior knowledge of modular relationships
e Assessment from experts
e ( Learning from data )g
e We simply link a certain architecture (e.g. a layered graph)
[ )
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Local Structures &
[ XX
: o0
Independencies PLAC 19 = P (hoPLCIR) .
e Common parent @ B
e Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent” @
e Cascade
e Knowing B decouples A and C CA > B > A,
"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"
(55 B

e Knowing C couples A and B

because A can "explain away" B w.r.t. C CC D
"If A correlates to C, then chance for B to also correlate t@’% will decrease” A

e The language is compact, the concepts are m! Q’j @
4 &

© Eric Xing @ CMU, 2006-2011 12




A simple justification

B
Hi S
pln (18 = PLATR) (el >
M

PUAB ()= PLB)PLALD) FLeih )
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Graph separation criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized

ancestral graph @) )

e Example:

e A A

original graph ancestral moral ancestral
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Local Markov properties of DAGs

Structure: DAG

* Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

* Local conditional
distributions (CPD) and the
DAG completely determine
the joint dist.

» Give causality
relationships, and facilitate
a generative process
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Global Markov properties of
DAGs ® c@
3

s/

e Xis d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary
-conditions):

.!'0;7) ¥ ¥4 X ¥ Z
T » Defn: I{6)=all independence

@ 2 properties that correspond to d-
@) 0 separation:

v z X £ I(G) = {X 1 Z‘Y sdsepg (X; Z‘Y)}

X L £ X o £ N_’\
- ' \ * D-separation is sound and
. complete

(a} 1]
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Example: w;\pm\g‘ )
ke * Copmevergoms
. L Ly \ ¢
X4 X%J)—h [,
X5 \'Ill

Essentially: A BN is a database of Pr. Independence statements among variables.

Towards quantitative specification of | se¢s
probability distribution °e

e Separation properties in the graph imply independence
properties about the associated variables
e For the graph to be useful, any conditional independence

properties we can derive from the graph should hold for the
probability distribution that the graph represents

e b A3
e The Equivalence Theorem -?:E&ﬁ) ——  E(paa)
For a graph G, F(P?LL‘)) =

Let 9, denote the family of all distributions that satisfy 1(G),
Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Quantitative Specification

OO puncteiptun

—— pABC) = P AY)-PLCAD)

A H B

- - o000
Conditional probability tables sels
(CPTs) '
a® |0.75 bo 0.33 7 —

- 1 6y P(ab,c.d) =
a 1025 b’ 1067 IggaéP‘(b)P(c|a,b)P(d|c)
FeAo )
a0 a%b! a'b0 a'b?
co 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3
l CO C1
‘ d° 0.3 |05
d’ 07 0.5
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Conditional probability density
func. (CPDs)

P(a,b,c.d) =
A~N(u,, Z;)  B~N(up, &) P(a)P(b)P(c|a,b)P(d|c)

,.wv

\‘s‘

w
ss ‘
~§~

Q

ws
C-N(A+B. %) O /A w
( c) 3 ﬁ,'M\ ‘w“‘ “‘& “‘“&‘ R
| 3
Q
‘ D~N(u,tC, Z,)
D
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Conditional Independencies :
Label
Features
What is this model
1. When Y is observed?
2. When Y is unobserved?
© Eric Xing @ CMU, 2006-2011 22
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Conditionally Independent
Observations

Model parameters

@ ___ @ Data = {y,,...y,}

© Eric Xing @ CMU, 2006-2011 23

“Plate” Notation

’ Model parameters
|

Data = {X,,...X}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

© Eric Xing @ CMU, 2006-2011 24
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Example: Gaussian Model

‘ ’ Generative model:
\ (yr—vd
P(Xg,- Xy | 1y ©) = ﬂ p(X; | 1, o)

= p(data | parameters)

= p(D 10

i=1:n

where 0 = {p, o}

= Likelihood = p(data | parameters)
=p(D[6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (8)
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Bayesian models

7

i=1:n
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More examples 5
m,s
@)
Parametric and nonparametric methods X
X
X Y
Linear, conditional mixture, nonparametric @ @)
Generative and discriminative approach X X
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Example, con'd :
e Evolution
ancestor
T years |:>
Tree Model
© Eric Xing @ CMU, 2006-2011 28
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Example, con'd

e Speech recognition

oo epe: a wiggle word

(;}DMWWMW @ G
SRR

:::::

Hidden Markov Model
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Example, con'd

e Genetic Pedigree
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An
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BN and Graphical Models

e A Bayesian network is a special case of Graphical Models

e A Graphical Model refers to a family of distributions on a set of
random variables that are compatible with all the probabilistic
independence propositions encoded by a graph that connects these

variables

probability distributions without paying an exponential cost;

ign exponentially-large

e Itis asmart way@uﬂle&ped-y%eempeseldesgn\p\raw
at

the same time endow the distributions with structured semantics

o B
- I v R |
e CHE

P(X1X5.X 35X 4, X5,X 6, X7, X3)

P(X15) = P(X)P(X)P(X5 | X Xo)P(X4 | X2)P(X5 | X;)

P(Xg| X3, X,

© Eric Xing @ CMU, 2006-2011
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Summary

e Represent dependency structure with a directed acyclic glraph
e Node <->random variable
e Edges encode dependencies (f
Absence of edge -> conditional independence
e Plate representation
e A BN is a database of prob. Independence statement on variables l

O

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning

© Eric Xing @ CMU, 2006-2011 33
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Reading: Chap. 8, C.B book
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Inference and Learning 5
e We now have compact representations of probability
distributions: BN
e A BN M describes a unique probability distribution P
e Typical tasks:
e Task 1: How do we answer queries about P?
We use inference as a name for the process of computing answers to such
queries
e Task 2: How do we estimate a plausible model M from data D?
i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(# |D), which is actually an inference problem.
iii. When not all variables are observable, even computing point estimate of #/
need to do inference to impute the missing data.
© Eric Xing @ CMU, 2006-2011 35
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Probabilistic Inference .

e Computing statistical queries regarding the network, e.g.:
e Isnode Xindependent on node Y given nodes Z,W ?
e What is the probability of X=true if (Y=false and Z=true)?
e Whatis the joint distribution of (X,Y) if Z=false?
e What is the likelihood of some full assignment?
e What is the most likely assignment of values to all or a subset the nodes of the network?

e General purpose algorithms exist to fully automate such
computation
e Computational cost depends on the topology of the network
e Exactinference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling

© Eric Xing @ CMU, 2006-2011 36
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In_fer_entlal Query 1: S
Likelihood °
e Most of the queries one may ask involve evidence
e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,, X, ..., X, }
e Without loss of generality X,={X,.4, ... . X, },
o Write X,;=X\X, as the set of hidden variables, X, can be & or X
e Simplest query: compute probability of evidence
P(X,)= D> P(Xy,, X,) = 20ec 2P (Xgyeee X X,)
Xu X X
o this is often referred to as computing the likelihood of x,
© Eric Xing @ CMU, 2006-2011 37
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Infergn_tlal Query 2:_ | s
Conditional Probability o

e Often we are interested in the conditional probability
distribution of a variable given the evidence

PXuxy) __ PXuxy)

P(XH IXV =XV) = P(XV) B ZP(XH :XH!XV)

o this is the a posteriori belief in X,;, given evidence X,
e We usually query a subset Y of all hidden variables X,,={Y,Z}
and "don't care" about the remaining, Z:

P(Y|XV)=ZP(Y,Z=Z|XV)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.

© Eric Xing @ CMU, 2006-2011 38
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Applications of a posteriori Belief

e Prediction: what is the probability of an outgome given the starting
condition !
D D C >

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms
2
CA >0 O=—>C D
e the query node an ancestor of the evidence

e Learning under partial observation

e fillin the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2006-2011 39
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Inferential Query 3.. s
Most Probable Assignment o

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest
e Such reasoning is usually performed under some given
evidence x,, and ignoring (the values of) other variables Z:
Y’ |x, =arg max, P(Y[x, ) =argmax, z P(Y,Z=1z]|x,)
e this is the maximum a posteriori configuration of Y.
© Eric Xing @ CMU, 2006-2011 40
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Complexity of Inference

Thm:
Computing P(X,4=xg4l x,) in an arbitrary GM is NP-hard

e Hardness does not mean we cannot solve inference

e It implies that we cannot find a general procedure that works
efficiently for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

[ X X ]

0000

HH
Approaches to inference o

e Exact inference algorithms
e The elimination algorithm

e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques

e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2006-2011 42
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HE
Marginalization and Elimination o
I
e A signal transduction pathway:
O~~~ o~
\ ;-_.,.___Ym_gﬁ:_:_m
What is the likelihood that protein E is active? i -1‘; _____;_“;
e Query: Ae) .
PE)=3> T S Pab.cde) L E o
d_c b a = Ml
e By chain decomposition, we get
=>.2.2.2 P(aP(bla)P(c|b)P(d |c)P(e|d)
d ¢ b a
[ X X ]
0000
HH
Elimination on Chains -

A= O—Ceo—Coo—CED

e Rearranging terms ...

P(e)=2.>.> > P(@)P(bla)P(c|b)P(d|c)P(e|d)
=>.2.2.P(cIb)P(d[c)P(e|d)D P(2)P(b|a)

© Eric Xing @ CMU, 2006-2011 44
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Elimination on Chains

CLO—C O~~~

e Now we can perform innermost summation
P(e)=2.2> > P(cIb)P(d|c)P(e|d)D P(a)P(ba)
=222 PcIb)P(d [c)P(e]|d)p(b)

e This summation "eliminates" one variable from our
summation argument at a "local cost".

© Eric Xing @ CMU, 2006-2011 45

Elimination in Chains

SIS GIP ED o @D @

e Rearranging and then summing again, we get

Pe)=>.>"> P(c|b)P(d |c)P(e|d) p(b)
=>">P(d|c)P(eld)> P(c|b)p(b)
=> > P(d|c)P(e|d)p(c)

© Eric Xing @ CMU, 2006-2011 46
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Elimination in Chains

|
CEO>—CE O~ o—CEo—CED

L

e Eliminate nodes one by one all the way to the end, we get

P(e)=2_P(e|d)p(d)
e Complexity:

e Each step costs O(|Val(X;)|*|Val(X,,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")

© Eric Xing @ CMU, 2006-2011 47

Inference on General BN via
Variable Elimination

General idea:

e Write query in the form

P(Xlle):Z"'ZZHP(Xi | pai)

X3 Xp |
e this suggests an "elimination order" of latent variables to be marginalized

e lteratively

e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product

e wrap-up

P(X;,e)

P(X,|e)= P(e)

© Eric Xing @ CMU, 2006-2011 48
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From elimination to message
g (X X X
[
H [ X J
passing s
e Recall ELIMINATION algorithm: o~~~
e Choose an ordering .Z in which query node f is the final node
e Place all potentials on an active list
e Eliminate node i by removing all potentials containing i, take sum/product over x;.
e Place the resultant factor back on the list
e Fora TREE graph:
e Choose query node f as the root of the tree
e View tree as a directed tree with edges pointing towards from f
e Elimination ordering based on depth-first traversal
e Elimination of each node can be considered as
message-passing (or Belief Propagation) directly
along tree branches, rather than on some transformed graphs
- thus, we can use the tree itself as a data-structure to do general inference!!
© Eric Xing @ CMU, 2006-2011 49
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essage passing for trees :

Let my(x;) denote the factor resulting
from eliminating variables from bellow
up to i, which is a function of x;:

ﬂ mzf(xz) mjilx;) Z(r_'t'.r,]l'[.r._.r,] 1_[ J.'u.,(.r..])
x REN{IN

This is reminiscent of a message sent
fromjtoi.

T EEN(H)\i

play) oc(xy) H meg(zy)

eEN(S)

m;i(x;) represents a "belief" of x; from
Xi!
© Eric Xing @ CMU,J 2006-2011 50




e Elimination on trees is equivalent to message passing along
tree branches!

ric Xing @ CMU, 2006-2011 51
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esce
[ L
The message passing protocol: o
e A two-pass algorithm:
ma3(X3)

26
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. 0000
Belief Propagation (SP-algorithm): | s32¢
o000
. . . o0
Sequential implementation S
Svm-Proover(T. E)
EVIDENCE(E)
[ = CnooseRoot(V)
for ¢ € N(f) <\
CoLLECT(f,e)
for « € N(f)
DIsTRIBUTE( f, ¢}
forie ¥ ~
CompPuTEMARGINAL(T) L
EVIDENCE(E) TR
foric £ ' i
W8 (x) = Pla)dl2i, £i) ~
for i ¢ & S/
P () = () 5 A
CoLLECT(i, j) / \
for k € N(j)\i Y s 0)
o {_‘ur.|.|-;Jr]-::u\ %) O “
SENDMESSAGE(], 1)
DISTRIBUTE(i, j) O)i
SENDMESSAGE(, 1) T
for ke |
DISTRIBUTE( j, k) T
SENDMESSAGE(]. 1) 'C;' i
mjilay) ZI_J\"Li.r'jjr"[.r._.r,J l__[ tgylrg)) A
x keN N Do / ) Do e
CoMPUTEMARGINAL(Y) 2
plxi) o pF (i) Il mjil:) & C‘ ey C
EN ) © Eric Xing @ CMU, 2006-2011 53
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Belief Propagation (SP-algorithm): oo
. " o0
Parallel synchronous implementation |«
e Foranode of degree d, whenever messages have arrived on any subset of d-1 node,
compute the message for the remaining edge and send!
A pair of messages have been computed for each edge, one for each direction
All incoming messages are eventually computed for each node
© Eric Xing @ CMU, 2006-2011 54
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Correctness of BP on tree

e Collollary: the synchronous implementation is "non-blocking"

e Thm: The Message Passage Guarantees obtaining all
marginals in the tree

my(xi) = E(iﬁ(mj)w(%i,fj) H mkj(wj))

zj kEN ()N

e \What about non-tree?

[ X X ]

[ X X X

ece’
Inference on general GM 4

Now, what if the GM is not a tree-like graph?

e Can we still directly run message
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run message-passing
onit!

- Junction tree algorithm

© Eric Xing @ CMU, 2006-2011 56
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A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

The Shafer Shenoy Algorithm s

e Shafer-Shenoy algorithm

e Message from clique /to clique j:

Hisi = Z '//CiH/ukai (Sw)

: ) Ci\S; k#j
e Clique marginal t !

p(C) <y, H:ukai (Sw)

© Eric Xing @ CMU, 2006-2011 58
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The Junction tree algorithm for HMM °
e A junction tree for the HMM |
youx) vy vl ) v yr)
D D O e O S 7(3)4 7?)— ol T
= g )l% ycz(y)l# 4(”%
al 3 )"
) ) & &) A h A
° nghtward pass v(y2. X,) v(ysX;) vy Xr)
o (Yer) = ZV/(YU Yeer) 1 (yt)lun(ynl) Hoan () Y Yea) i (Vi)
% it = =0
=2 Pt 1Y) 1 (V) P | Vi) It
Ve Hr (V1) i_|:
= Pp(X | y(+1)z ay\.y|,1/ll—1~>t(yl) .;‘.'."_
This is exactly the forward algorithm! YV %)
e Leftward pass ... B 02) Vi) toerar)
Hi 1ot (yx) = ZV/(YU yt+1)/ul<—t+1(YI+1)/utT(yl+l) o = ; | I =
Vi Hyr (Vra) :;:
= ZP(}’M [Vt s V) Pt | Vid) )
This i§”éxact|y the backward algorithm! V/(Y;me)
© Eric Xing @ CMU, 2006-2011 59
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Summary :

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:

--- That of taking a sum over product of potential functions

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithms

e What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.

© Eric Xing @ CMU, 2006-2011 60
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Extra reading:

© Eric Xing @ CMU, 2006-2011 61

From Elimination to JT on a
general Bayesian network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

© Eric Xing @ CMU, 2006-2011 62
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(X XX
Example: Variable Elimination 5
I
e Query: P(A |h)
e Need to eliminate: 8,C,D,E,F,6,H 0 o
e Initial factors: 0 G
P(@)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]e, f) e o
e Choose an elimination order: H6,F,E,D,C,R e
e Step 1:
e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., @:
m.(e f)=p(h=h|e f) bl

& W
e This step is isomorphic to a marginalization step: S G
m,(e, f)=> p(hle, f)s(h=h) GEG
h @
63
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: BCD,EF,6 0 o
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e o
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, )
& G
e Step 2: Eliminate &
e compute
my(e)=2_ p(gle)=1
’ ; O W
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)m (e)m, (e, f) &
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, f) G, £
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Example: Variable Elimination 5
|
e Query: (B |h)
e Need to eliminate: BCD,EF 0 o
e |[nitial factors: 0 G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) A
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m, (e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & W
e Step 3: Eliminate F
e compute
m,(e,a) =Y p(f |a)m,(e, f)
f Ce) A
= P(a)P(b)P(c|b)P(d |a)P(e]|c,d)m, (a,e) & W
E
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B8,C,0,F 0 o
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) (2 A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, )
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & G
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m;, (a,e)
e Step 4: Eliminate £
T compue m.(a,c,d)=>p(e|c,d)m,(ae) o
S D

= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)
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Example: Variable Elimination .
|
e Query: (B |h)
o Need to eliminate: 8,0 0 o
e |Initial factors: 0 G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)P(g|e)P(hle, )
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)P(g|e)m, (e ) L P
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

e Step 5: Eliminate D
e compute m, (a,c)zz p(d |a)me(a,c,d)
d

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2011
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B,C 0 o
e |[nitial factors: Q
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, ) e o
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m,(e, ) Q
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate £ @

e compute m, (a, b) = Z p(C | b)md (a, C)

= P(a)P(b)P(c|d)m,(a,c)

© Eric Xing @ CMU, 2006-2011
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Example: Variable Elimination 5
e Query: A(B|h)
o Need to eliminate: B 0 o
e Initial factors: 0 G
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, f) (£ P
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m, (e, f) @& &
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m, (a,b)
e Step 7: Eliminate B2 @
. compute m,(a) = Y. p(b)m, (a,b)
b
= P(a)m,(a)
© Eric Xing @ CMU, 2006-2011 69
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Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B 0 o
e |[nitial factors: 0 Q
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d [a)P(e|c,d)P(f |a)P(g |e)m, (e, f) (£ (P
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) OO

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m,(a,b)
= P(a)m,(a)
o Step8: Wrap-up  p(ah)=p(@m,(a), p(h)=3 p@m,(a)
- p(a)m,(a) )
P(alh)=—=—>-2"-
=PI =5 e, @)
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Complexity of variable sece
.. . b
elimination :
e Suppose in one elimination step we compute
m, (Yyr--0h Yi) = Z m' (X, Yyieean Vi)
X k
m' (X, Yysees Vi) = H m; (X, Y,,)
i=1
This requires
o ke|Val(X)|s[T|Val(Y;)| multiplications
- For each value of x, y;, ..., y;,, we do Amultiplications
[Val(x)|s T T|Val(¥.)| additions
— For each value of y,, ..., y;, we do /Va/(X)/ additions
Complexity is exponential in number of variables in the
intermediate factor o erens @ oo 20052011 B
[ X X ]
(X X X}
0000
.. . . b
Elimination Cliques :
@,
2l <7
&
m, (e, m, m; (e,a) m,(a,c,d)
® @D O, = = @
= elo' e,
my (a,c) m.(a,b) m, (a)
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36



Understanding Variable
Elimination

e A graph elimination algorithm

@D @ @D @ P @ O
21 &P 2 2

T

moralization graph elimination

e Intermediate terms correspond to the cliques resulted from
elimination
e “good” elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found

e Applies to undirected GMs

[ X X ]

[ X X X

ece’
Elimination Clique -

e Recall that Induced dependency during marginalization is
captured in elimination cliques
e Summation <-> elimination
e Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a)P(e|e, d) P( fla) P(g|e) P(hle, f)
= P(a)P(b)P(e|b)P(dla) P(e|c, d) P( fla) P(gle)on(e. f)
= P(a)P(b)P(ec|b)P(dla)Ple|e, d)P( fla)o,(e)onle. f)
= P(a)P(b)P(c|b)P(dla)Plelc,d)dla.e)

BO—AD) &O—@
= Pla)P(b)P(cb)P(dla)d.(a, e, d) ‘
= Pla)P(b)Plelb)dala. c)
= Pla)P(b)g.(a,b)
= Pla)dula)
= gfa)

e Can this lead to an generic

inference algorithm?

© Eric Xing @ CMU, 2006-2011 74
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0000
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A Clique Tree o°
m,(a,c,d)
=Y pelc,d)m,(e)m; (a.e)
¢ © Eric Xing @ CMU, 2006-2011 75
. . . eoo
From Elimination to Message sece
Passing o
e Elimination = message passing on a clique tree
-5 §fi ST
Il
m,(a,c,d)
=2 p(e|c,d)m,(e)m, (a,e)
e Messages can be reused
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. . . eoo
From Elimination to Message secs
Passing -

e Elimination = message passing on a clique tree
e Another query ...
o Messages m.and m, are reused, others need to be recomputed
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o000
eeo00
- a2
The Shafer Shenoy Algorithm :
e Shafer-Shenoy algorithm
e Message from clique /to clique j:
Hisi = Z '//CiH/ukai (Sq)
. . G\ k#j
e Clique marginal !
p(C) <y, H:ukai (Sw)
k
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39



A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Resultsin marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...
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