Machine Learning

10-701/15-781, Fall 2011
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Definition (of HMM) o

e Observation space

Alphabetic set: C=4¢,6,,C
Euclidean space: Rd { v k} @ @ @ @
e Index set of hidden states @ @ @ @
1={12,.M)
e Transition probabilities between any two states ~ Craphical model

p()’fj :ll)’rg =1) =a
or  p(y; |y, =1)~ Multinomial(g, ;g ,,...,q, , ) Vi €.

1 A2
e Start probabilities X
p(v,) ~ Multinomial(z,, z,,..., 7, ). >§§<
e Emission probabilities associated with each state [
px, |yl =1~ Multinomial(b,.vl,b,.v2 ..... b,.x),w el. i€
or in general:

State automata

plx, |yl =0)~1(10,)viel
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Three Main Questions on HMMs 5
1. Evaluation
GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence X,
FIND parameters 0 = (7, g, 7y) that maximize P(x| 6)
ALGO. Baum-Welch (EM)
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Learning HMM: two scenarios .

Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region X = X4...X4 gg0.000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

QUESTION: Update the parameters ¢ of the model to maximize
A X 0) --- Maximal likelihood (ML) estimation
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MLE
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Supervised ML estimation

e Given x= x;...x, for which the true state path y= y,...yis

known,

e Define:
A = # times state transition /—j occurs in'y
By = # times state 7in y emits Ain x

e We can show that the maximum likelihood parameters fare:

att — #i—>J) zn erzz y;,f-1y'{r _ A;

/H - . - T /. -

' #(i—e) Zn Zf:Z Vnra Z‘UA’J
bML _ #(/ e k) _ z,, ijly,;.,rxn/fr _ B,

LR Y L

o Whatifyis continuous? We can treat {(x, ,,y,,):#=1:T,n=1: N} as AkT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of @is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:

P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6,1, 2, 3, 6, 2, 3
y=F, F, F, F, F, F, F, F, F, F

e Then: ar =1, an =0
Dry = be3 = .2;
br, =.3; bry = 0; brs = beg = .1
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Pseudocounts :

e Solution for small training sets:
e Add pseudocounts
A = # times state transition /- joccurs iny + R;
By = # times state /in y emits Ain x+ S,
° ’Q/j'
e Total pseudocounts: R; =X R, 5,= XSy,
--- "strength" of prior belief,

5;;are pseudocounts representing our prior belief

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief

e Small total pseudocounts: just to avoid 0 probabilities ---
smoothing
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Unsupervised ML estimation
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Unsupervised ML estimation

e Given x= x;...xy, for which the true state path y= y,...yyis
unknown,

o EXPECTATION MAXIMIZATION

Starting with our best guess of a model M, parameters 6.

=4

1. Estimate A,j, By in the training data
How? A; :Z,,,,<Y;{,f—1}’r{n> B, =zﬂ,f<)’n’,r>Xfr,
Update @according to A;, B
Now a "supervised learning" problem

2. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set 8 each iteration
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The Baum Welch algorithm

|
e The complete log likelihood

4(9;)" y) =log p(x,y) = |09H[P(Yn1)HP(YM | yﬂ,f—l)HP(Xﬂ,f | Xn,f))

F=1
e The expected complete log likelihood

(O3 9) =2}, 1007 | (i)
e EM
e The E step
Var = <y/;‘,f> =p(y,, =1lx,)

&t =yar i) = Pyira =Lyl =11x,)
e The M step ("symbolically" identical to MLE)

T .
log ‘%‘J + EZ(X;& <yrlr‘f>p(y“‘xn) log b«k)

PYnp1:¥ntlXn) par

) T i T
o DI ar = 2 er:zl ,,”{ bM = 2 Zrdr}’ir.rf\/:f
/ 0 i
! N Zn Zrzl Vnr Zn Zrzl Yy
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The Baum-Welch algorithm --
comments o

Time Complexity:

# iterations x O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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Summary: the HMM algorithms

Questions:

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd roll
is loaded, given the observed sequence? Forward-
Backward

e Decoding: What is the most likely die sequence? Viterbi

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)

[ X X ]

0000
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Applications of HMMs H

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e [n the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence
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Typical structure of a gene

Startcodon  codons  ponor site

Transcription
start
Promoter
Intron
/_,_A_\_
/
Stop codon
\'\ GATCCCCATGCCTGAGGGCCCCTC)
.‘\ \
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GENSCAN (Burge & Karlin)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
(CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

PATACACAGCGCACACAT

S

'CCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT.
|TTTTCAACCCAGCACCGCTCGTCTCTT

TTAGCATTCGTACGAGGAACAGTGCTG
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT

)

oS 2

| AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA

ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
[TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCT T TAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAG,
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Shortcomings of Hidden Markov | ss22
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Model :
v (YO ) D Y v
1 2 n
¢ HMM models capture dependences between each state and only its
corresponding observation
e NLP example: In a sentence segmentation task, each segmental state may depend not just
on a single word (and the adjacent segmental stages), but also on the (non-local) features of
the whole line such as line length, indentation, amount of white space, etc.
e Mismatch between learning objective function and prediction
objective function
e HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we
need the conditional probability P(Y|X)
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Discriminative Classifiers .

e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers (e.qg., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l
e Estimate parameters of P(Y|X) directly from training data
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Structured Conditional Models

e Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models
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Conditional Distribution

e Ifthe graph G = (V, E) of Y is a tree, the conditional distribution over
the label sequence Y =y, given X = x, by the Hammersley Clifford
theorem of random fields is:

Py (Y[ X) ocexp(Z A f@yl.x)+ ukgk(v,ylv,X)J

ecEk veV k
_  xis a data sequence 0{ ()
— Yy is alabel sequence »
— vis a vertex from vertex set V = set of label random variables Xy o Xy

— eis an edge from edge set E over V

- f,and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the number of features

- O=(A A Ay, 0o 1) A and g, are parameters to be estimated
- Yl|eis the set of components of y defined by edge e

- y|, is the set of components of y defined by vertex v
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Conditional Random Fields

T

T

1
P(ylzn|xl:n) = mH¢(yivyi—17X1:n) = Z(
m) i

1
X1 =1

e CREF is a partially directed model
e Discriminative model
e Usage of global normalizer Z(x)
e Models the dependence between each state and the entire observation sequence
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T H exp(W (i, Yim1, X))

| 822,

D)—()—() - ~(»)

Conditional Random Fields
|

e General parametric form:

T

Plylx) = mexp<2<;Akfk<yi,yi_l,x>+;uzgl<yi,x>>>

i=1

n

= (SO e, %) + T B (%))

Z(x, A\ p)
where Z(Xa Aaﬂ) = ZGXP(Z(ATf(yiayi—lax) + ,uTg(yuX)))
v i=1
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Conditional Random Fields

1
Z00 exp{; ﬁfé(xyyc)}

%04X%:

e Allow arbitrary dependencies
on input

e Clique dependencies on labels

e Use approximate inference for
general graphs
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CRFs: Inference  |mG)= 2 vallm.Ga || 22
e Computing marginals using a message passing algorithm
called “sum-product”
Oéo(ynyi 1) = eXp(/\Tf(ynyz 1,Xd)
e Initialization: +1" g (i, Xa))
Y2 m Y3 @ @
Yi.Yz Y2, Y3 _— )—‘—‘
Also called

e After calibr: = P(yi,yi_llxd) o oz(yyz,yi_ﬂ forward-backward algorithm

aYis Yi—1
= Py, yi—1lxa) = 5 ( oy ; 0= o/ (yi, yi-1)
Yi,Yi—1 v =
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CRFs: Inference My (85) = My [Tmes(S0)

I
e Given CRF parameters A and p, find the y” that maximizes P(y|x)

y" = argmax exp(Z()\Tf(yq;, yio1, %) + 1" gy, x)))
7 i=1
e Canignore Z(x) because it is not a function of y

e Again run a message-passing algorithm called “max-product”:

Same as Viterbi decoding
used in HMMs!

@ : @ : ’ Yn-z @ Yn-l @
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CRF learning

e Given {(Xy Yg)tq=1", find 1*, u* such that
N
Mk, k= argmaXL(/\ i) = argmax H Py 1xa, A, 1)
e

T

= argmaxH 7 A "™ cxp(Z(ATf(yd,i,yd,i,hxd)+uTg<yd,i,xd>>)
d=1 ! i=1

- argmaxz Z >\ fyd77yd7 17Xd)+u g(ydhxd))*lOgZ(X%)\?M))

d=1 i=1
Gradient of the log-partition function in
. . an exponential family is the expectation
e Computing the gradient w.r.t A: of the sufficient statistics.
N n n l/—/
VAL ) = D O fWairyai-1.%a) — »_(P(ylxa) Y £ (Wai: Yai-1.%a)))
d=1 i=1 y i=1
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CRF learning

N n n

VAL 1) = Y O E(a Yai-1,%a) 4D _(Plylxa) D £ vim1,%a))
d=1 i=1 v i=1

e Computing the model expectations: ﬂ

e Requires exponentially large number of summations: Is it intractable?

n

Z(P(Y\Xd)Zf(yi,yi—l,xd)) = Z(Zf(yiayi—laxd)P(Y|Xd))

Yy i=1 =1

- Z Z £(yi, vie1,%a) P(Yi, yi—1]%Xa)

=1 Yi,Yi—1

[ Expectation of f over the corresponding marginal

Tractable! probability of neighboring nodes!!
e Tractable!

e Can compute marginals using the sum-product algorithm on the chain
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CRF learning

e Computing feature expectations using calibrated potentials:

Z f(yiayi—laxd)P(yiayi—1|Xd) = Z f(yiayi—hxd)a/(yiayi—l)
Yi,Yi-1 Yir¥i-1
e Now we know how to compute V,L(A,u):
N n n
VAL ) = 3O EWaisvai1xa) — D (Plylxa) D £ yi1,%a))
d=1 i=1 y i=1
N n
= > O (fWaiyai-1,%a) — Y o (Ui vic1)f (Vi Yi—1,Xa)))
d=1 =1 Yi,Yi—1
e Learning can now be done using gradient ascent:
AED = A v LA, )
ptn = 40 ‘HZ}VML()\@),M(”)
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CRFs: some empirical results

e Comparison of error rates on synthetic data

60
A Data is increasingly
50 ot s h!gher order in the
s direction of arrow
40/ o
g
Wwi3p |
L
o
O
204
10 CRFs achieve the lowest
_ error rate for higher order
0' : data
) 20 30 20 50 &0
HMM Error
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CRFs: some empirical results .
e Parts of Speech tagging
model | error  oov error
HMM | 5.69%  45.99%
MEMM | 637%  54.61%
CRF | 555%  48.05%
MEMM™ | 481%  26.99%
CRF* | 427%  23.76%
T Using spelling features
Using same set of features: HMM >=< CRF
Using additional overlapping features: CRF* >> HMM
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Summary

e Conditional Random Fields is a discriminative
Structured Input Output model!

e HMM is a generative structured 1/0 model g

e Complementary strength and weakness:
1.
2.
3.
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