Machine Learning

10-701/15-781, Fall 2011

Conditional Random Fields

Eric Xing

Lecture 12, October 19, 2011

Reading: Chap. 13 CB

© Eric Xing @ CMU, 2006-2011

Definition (of HMM)

Alphabetic set: $\mathbb{C} = \{c_1, c_2, \cdots, c_K\}$

Euclidean space: Index set of hidden states

 $I = \{1, 2, \dots, M\}$ Transition probabilities between any two states

$$\begin{split} p(y_t^j = 1 \mid y_{t-1}^i = 1) = a_{i,j}, \\ \text{or} \quad p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial} \big(a_{i,1}, a_{i,2}, \dots, a_{i,M}\big), \forall i \in \mathcal{I}. \end{split}$$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \dots, \pi_M)$$

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in I.$$
 or in general:

$$p(\mathbf{X}_t \mid \mathbf{y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in \mathbb{I}.$$

State automata

© Eric Xing @ CMU, 2006-2011

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x, FIND Prob (x | M) ALGO. **Forward**

2. Decoding

GIVEN an HMM M. and a sequence x, FIND the sequence y of states that maximizes, e.g., P(y | x, M), or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

Learning

GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ii}, \eta_{ik})$ that maximize $P(\boldsymbol{x} | \theta)$

ALGO. Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2011

Learning HMM: two scenarios

- Supervised learning: estimation when the "right answer" is known
 - **Examples:**

GIVEN: a genomic region x = $x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - **Examples:**

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

MLE

© Eric Xing @ CMU, 2006-2011

_

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{\mathcal{B}_{ik}}{\sum_{k'} \mathcal{B}_{ik'}}$$

• What if y is continuous? We can treat $\{(x_{n,t},y_{n,t}): t=1:T, n=1:N\}$ as $N \leftarrow T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

© Eric Xing @ CMU, 2006-2011

Supervised ML estimation, ctd.

- Intuition:
 - When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data
- Drawback:
 - Given little data, there may be overfitting:
 - $P(x|\theta)$ is maximized, but θ is unreasonable

0 probabilities - VERY BAD

 $b_{F2} = .3$; $b_{F4} = 0$; $b_{F5} = b_{F6} = .1$

• Example:

Then:

Given 10 casino rolls, we observe

```
\mathbf{x} = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3

\mathbf{y} = \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}

a_{FF} = 1; a_{FL} = 0

b_{F1} = b_{F3} = .2;
```

© Eric Xing @ CMU, 2006-2011

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in \mathbf{y} + R_{ij}

B_{ik} = # times state i in \mathbf{y} emits k in \mathbf{x} + S_{ik}
```

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \sum_i R_{ii}$, $S_i = \sum_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

© Eric Xing @ CMU, 2006-2011

Unsupervised ML estimation

© Eric Xing @ CMU, 2006-2011

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - EXPECTATION MAXIMIZATION
 - o. Starting with our best guess of a model M, parameters θ .

 - 1. Estimate A_{ij} , B_{ik} in the training data

 How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$,
 - Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 2. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

© Eric Xing @ CMU, 2006-2011

The Baum Welch algorithm

• The complete log likelihood

$$\ell_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(y_{n,1}) \prod_{t=2}^T p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^T p(x_{n,t} \mid x_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \boldsymbol{\ell}_{c}^{'}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i} \right\rangle_{p(y_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle_{p(y_{n,t-1}, y_{n,t}|\mathbf{x}_{n})} \log \boldsymbol{a}_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i} \right\rangle_{p(y_{n,t}|\mathbf{x}_{n})} \log \boldsymbol{b}_{i,k} \right)$$

- - The E step

$$\begin{split} & \gamma_{n,t}^{i} = \left\langle y_{n,t}^{i} \right\rangle = p(y_{n,t}^{i} = 1 \,|\, \mathbf{x}_{n}) \\ & \xi_{n,t}^{i,j} = \left\langle y_{n,t-1}^{i} y_{n,t}^{j} \right\rangle = p(y_{n,t-1}^{i} = 1, y_{n,t}^{j} = 1 \,|\, \mathbf{x}_{n}) \\ & \quad \text{The M step ("symbolically" identical to MLE)} \end{split}$$

$$\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N}$$

$$a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} X_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

The Baum-Welch algorithm -comments

Time Complexity:

iterations
$$\times$$
 O(K²N)

- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- · Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting

Summary: the HMM algorithms

Questions:

- Evaluation: What is the probability of the observed sequence? Forward
- Decoding: What is the probability that the state of the 3rd roll is loaded, given the observed sequence? Forward-Backward
- Decoding: What is the most likely die sequence? Viterbi
- Learning: Under what parameterization are the observed sequences most probable? Baum-Welch (EM)

© Eric Xing @ CMU, 2006-2011

13

Applications of HMMs

- Some early applications of HMMs
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence

© Eric Xing @ CMU, 2006-2011

Shortcomings of Hidden Markov Model

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just
 on a single word (and the adjacent segmental stages), but also on the (non-local) features of
 the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2006-2011

17

Recall Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: $X \rightarrow Y$, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!

• Use Bayes rule to calculate P(Y|X= x)

- Discriminative classifiers (e.g., logistic regression)
 - Directly assume some functional form for P(Y|X)
 This is a 'discriminative' model of the data!
 - Estimate parameters of P(Y|X) directly from training data

© Eric Xing @ CMU, 2006-2011

Structured Conditional Models

- Conditional probability P(label sequence y | observation sequence x)
 rather than joint probability P(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

© Eric Xing @ CMU, 2006-2011

19

Conditional Distribution

 If the graph G = (V, E) of Y is a tree, the conditional distribution over the label sequence Y = y, given X = x, by the Hammersley Clifford theorem of random fields is:

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E,k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V,k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x}) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set V = set of label random variables
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $\quad \theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k \text{ and } \mu_k \quad \text{are parameters to be estimated}$
- y_e is the set of components of y defined by edge e
- $y|_v$ is the set of components of y defined by vertex v

© Eric Xing @ CMU, 2006-2011

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model
 - Usage of global normalizer Z(x)
 - Models the dependence between each state and the entire observation sequence

© Eric Xing @ CMU, 2006-2011

2.

Conditional Random Fields

· General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

© Eric Xing @ CMU, 2006-2011

Conditional Random Fields

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\theta, \mathbf{x})} \exp \left\{ \sum_{c} \theta_{c} f_{c}(\mathbf{x}, \mathbf{y}_{c}) \right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

© Eric Xing @ CMU, 2006-2011

CRFs: Inference

· Computing marginals using a message passing algorithm called "sum-product":

Initialization:

$$+\mu^T \mathbf{g}(y_i, \mathbf{x}_d))$$

• After calibra $P(y_i,y_{i-1}|\mathbf{x}_d) \propto \alpha(y_i,y_{i-1})$ forward-backward algorithm

Also called

$$\Rightarrow P(y_i, y_{i-1} | \mathbf{x}_d) = \frac{\alpha(y_i, y_{i-1})}{\sum_{y_i, y_{i-1}} \alpha(y_i, y_{i-1})} = \alpha'(y_i, y_{i-1})$$

CRFs: Inference

$$m_{i\to j}(S_{ij}) = \max_{C_i \setminus S_{ij}} \psi_{C_i} \prod_{k \neq j} m_{k\to i}(S_{ki})$$

• Given CRF parameters λ and $\mu,$ find the \textbf{y}^{\star} that maximizes P(y|x)

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Again run a message-passing algorithm called "max-product":

© Eric Xing @ CMU, 2006-2011

25

CRF learning

• Given $\{(\boldsymbol{x}_d,\,\boldsymbol{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d},\lambda,\mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})) - \log Z(\mathbf{x}_{d},\lambda,\mu))$$

• Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

© Eric Xing @ CMU, 2006-2011

CRF learning

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)))$$
Computing the model expectations:

- - Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

Expectation of f over the corresponding marginal probability of neighboring nodes!!

- Tractable!
 - Can compute marginals using the sum-product algorithm on the chain

© Eric Xing @ CMU, 2006-2011

CRF learning

Computing feature expectations using calibrated potentials:

$$\sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1} | \mathbf{x}_d) = \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) \alpha'(y_i, y_{i-1})$$

• Now we know how to compute $\nabla_{\lambda} L(\lambda, \mu)$:

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_{d}) \sum_{i=1}^{n} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d})))$$

$$= \sum_{d=1}^{N} (\sum_{i=1}^{n} (\mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{y_{i}, y_{i-1}} \alpha'(y_{i}, y_{i-1}) \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d})))$$

Learning can now be done using gradient ascent:

$$\begin{array}{lcl} \boldsymbol{\lambda}^{(t+1)} & = & \boldsymbol{\lambda}^{(t)} + \mathbf{p} \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{\lambda}^{(t)}, \boldsymbol{\mu}^{(t)}) \\ \boldsymbol{\mu}^{(t+1)} & = & \boldsymbol{\mu}^{(t)} + \mathbf{p} \nabla_{\boldsymbol{\mu}} L(\boldsymbol{\lambda}^{(t)}, \boldsymbol{\mu}^{(t)}) \end{array}$$

© Eric Xing @ CMU, 2006-2011

CRFs: some empirical results

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF
- Using additional overlapping features: CRF⁺ >> HMM

© Eric Xing @ CMU, 2006-2011

Conditional Random Fields is a discriminative Structured Input Output model! HMM is a generative structured I/O model Complementary strength and weakness: 1. 2. 3. ...