Machine Learning

10-701/15-781, Fall 2011

. . 000
Infinite Mixture Models 0000
o000
T
o0
®
o000
0000
cses
Clustering -
°
° . ®
00’ ®e
%0 N o0
® o,
°® 00 o0
0%

e How to label them ?

e How many clusters ???
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Image Segmentation o

e How to segment images? |
e Manual segmentation (very expensive)

e Algorithm segmentation
K-means
Statistical mixture models
Spectral clustering

e Problems with most existing
algorithms
e Ignore the spatial information
e Perform the segmentation one image at

atime
e Need to specify the number of segments
a priori
© Eric Xing @ CMU, 2006-2011 3

Object Recognition and Tracking |3
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The Evolution of Science .
Research
circles
ResearchE:
topics
PNAS papers
1%0 -
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Clustering as se2e
(nonparametric) Bayesian Inference o

e Cluster = Mixture
e Each data point is generated from one Mixture

How Many clusters

0 ©
o°® N -Cross Validation
0% o o % -Data hungry!
©e ©e -Information theoretic
e e -AIC, MDL, etc.
-Non-Parametric
° 0® o - Manage model uncertainty
g ° © ) - Integrate over different clustering configurations
° ° - Base for many interesting extensions
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Outline

e Dirichlet Process: From finite mixture to Infinite mixture model
e The Chinese Restaurant Process
e Example: heliotype inference

e Intro to Markov Chain Monte Carlo
e Gibbs sampling

e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
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e How to label them ?

e How many clusters ???
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Mixture model: The Generative
Process

9

ocTry j

Generative Process O %

-For data point x;
- Sample c; _ Multi(mw)
- Sample x, _ f(¢.)

Cluster parameters DO NOT evolve over time

The Chinese Restaurant Process

e Customers correspond to data points
e Tables correspond to clusters/mixture components
e Dishes correspond to parameter of the mixtures

®e e
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The Chinese Restaurant Process
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Generative Process {

-For data point x;

- Choose table joc N; and Sample x; . f($) The rich gets richer effect
- Choose a new table K+1 oc o CANNOT handle sequential data

- Sample ¢, ~ G, and Sample x; .. f(¢,,;)
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More formally ... °e

e This is a Dirichlet Process Mixture Model
e Three equivalent constructions:

Gy

G
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N
Measure over Chinese Restaurant The Stick-breaking
Measures Process construction
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Dirichlet Process
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A CDF, G, on possibkla worlds
of random patrtitions follows a
Dirichlet Process if for any
measurable finite partition

(P18, B):

(G(4), G(), ... G(&n) ) ~
Dirichlet( a.Gy(#,), ..., aGO(d,) )

where G is the base measure
and a is the scale parameter

Thus a Dirichlet Process G defines a distribution of distribution

13

Stick-breaking Process

B, ~Beta(l, o) 2.

02 056, 64
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Chinese Restaurant Process g
P(c, =k|c,) = 1 0
1 0
1+a
1 a
2+a 2+a
1 2 a
3+ta 3+a 3+
b m, a
i+ta-1 i+a-1 i+ta-1
CRP defines an exchangeable distribution on partitions over an (infinite)
sequence of samples, such a distribution is formally known as the D|r|chlet
nnnnnn (DD © Eric Xing @ CMU, 2006-2011
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Case study: ancestral Inference .

?

< 2

Essentially a clustering problem, but ...

e Better recovery of the ancestors leads to better haplotyping results
(because of more accurate grouping of common haplotypes)

e True haplotypes are obtainable with high cost, but they can validate model
more subjectively (as opposed to examining saliency of clustering)

e Many other biological/scientific utilities
ric Xing @ CMU, 2006-2011 16
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Background:haplotype ambiguity |2
I
ATGC
sequencing
— R\
eterozygous
diploid individual A A AL A
TC— TG —
Genotype g T—
pairs of alleles, whose E__\ -
associations to chromosomes - T s~
are unknown % L)
AT
L —~ A~
haplotype h=(h,, h,)
possible associations of
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A Finite (Mixture of ) Allele Model |::

e The probability of a genotype g:

() (1)
p(g)= > p(h,h)p(glh,h,) O

by, hyedr | \
Population haplotype j Haplotype Genotyping
pool model model

e Standard settings:
o |H=K<<2! fixed-sized population haplotype pool
o p(hy,hy)=p(hy)p(hy)=fif, Hardy-Weinberg equilibrium
e Problem: K? H?

© Eric Xing @ CMU, 2006-2011 18




(XX
o000
o000
a2
Example: DP-haplotyper wuea s 5
e Clustering human populations
} DP
K R .
infinite mixture components
é } (for population haplotypes)
Likelihood model
(for individual
N haplotypes and genotypes)
e Inference: Markov Chain Monte Carlo (MCMC)
e Gibbs sampling
e Metropolis Hasting
© Eric Xing @ CMU, 2006-2011 19
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The DP Mixture of Ancestral sels
Haplotypes -

e The customers around a table in CRP form a cluster
e associate a mixture component (i.e., a population haplotype) with a table

e sample {a, &} at each table from a base measure G, to obtain the
population haplotype and nucleotide substitution frequency for that

component
L] ° ) ] ®
{Ag {Adg {Adg {Ag {Ag {Ad
3 ® ® ®

o With p(h|{A4, d}) and p(g|h,,h,), the CRP yields a posterior distribution on
the number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)

© Eric Xing @ CMU, 2006-2011 20

10



MCMC for Haplotype Inference

I
e Gibbs sampling for exploring the posterior distribution under

the proposed model

e Integrate out the parameters such as 0 or /1, and sample Cie y Ay
and h
e

p(Cie =k |C[_ie]’h’a) oc p(cie =k| C[—ie]) F’(hie |ak,h[_ie],0)

Posterior Prior X Likelihood

. CRP

e Gibbs sampling algorithm: draw samples of each random variable to
be sampled given values of all the remaining variables

MCMC for Haplotype Inference 4

1. Sample ¢ 0, from ) = pjel=iie) 1y, a)

x plef” = k[ m n)p(h{|ax.c.h'™7)

x (mgf'ifl + ﬂik)p(hg |a,z€..l[k__"”'3]). fork=1,. K +1

2. Samplea, from  plaxeeh) x  J] p(h lake. 17))

driele) =k
B Clap + ) T(6n + IL‘t)
T(ap + Bn + my)(|B| — 1)lk-t

R(ah y fjh)

Sample h, 0 from 2k b, .c.ag)

w

For DP scale parameter «: a vague inverse Gamma prior
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Convergence of Ancestral Inference oo
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DP vs. Finite Mixture via EM H
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Outline

I
e Dirichlet Process: From finite mixture to Infinite mixture model

e The Chinese Restaurant Process
e Example: heliotype inference

e Intro to Markov Chain Monte Carlo
e Gibbs sampling

e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
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Monte Carlo methods °e

e Draw random samples from the desired distribution

e Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-based
averages

ELF (1= F(x)
N T
e Asymptotically exact and easy to apply to arbitrary models

e Challenges:

e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?

e how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?

e how to know we've sampled enough?

© Eric Xing @ CMU, 2006-2011 26
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Example: naive sampling .
: |
e Sampling: Construct samples according to probabilities given in a
BN.
B E[ PA)
T A s
T F| %4
F T 29
FOF[ 00
NI
Alarm example: (Choose the right sampling
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
BO. Same for EO. P(A|B0, E0)=<0.001, 0.999>
suppose itis false...
© Eric Xing @ CMU, 2006-2011 27
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Example: naive sampling :

e Sampling: Construct samples according to probabilities given in a

BN.

EO BO AO MO JO
TR Y EO BO A0 MO JO
T T| 9%
P EO BO AO MO J1
FF| 00l

EO BO AO MO Jo

EO BO AO MO Jo

AR BN
1‘ o EO | BO | A0 | MO | Jo

Alarm example: (Choose the right sampling

sequence)

1) Sampling:P(B)=<0.001, 0.999> suppose it is false, E0 BO AD MO J0
BO. Same for EO. P(A|BO, E0)=<0.001, 0.999> EO BO AO MO 30
suppose it is false...

2) Frequency counting: In the samples right, EO BO AO MO J0

P(JJA0)=P(J,A0)/P(A0)=<1/9, 8/9>.

© Eric Xing @ CMU, 2006-2011 28




Example: naive sampling

e Sampling: Construct samples according to probabilities given in a

Alarm example: (Choose the right sampling EO BO AO MO 30

sequence)
EO BO A0 MO JO

3) what if we want to compute P(J|AL) ?

EO BO A0 MO J1
we have only one sample ...

P@JJAL)=P(J,A1)/P(AL1)=<0, 1>. EO BO A0 MO JO
4) what if we want to compute P(J|B1) ? EO BO A0 MO J0
No such sample available! EO BO AO MO J0

P(J|A1)=P(J,B1)/P(B1) can not be defined.

El BO Al M1 Jl

For a model with hundreds or more
variables, rare events will be very hard to EO BO AD MO 20

garner evough samples even after a long EO BO AO MO 70
time or sampling ...

EO BO A0 MO JO

[ X X ]
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Monte Carlo methods (cond.) o

e Direct Sampling

e We have seen it.
e Very difficult to populate a high-dimensional state space

e Rejection Sampling

e Create samples like direct sampling, only count samples which is
consistent with given evidences.

e Markov chain Monte Carlo (MCMC)

© Eric Xing @ CMU, 2006-2011 30
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Markov chain Monte Carlo

I
e Samples are obtained from a Markov chain (of

sequentially evolving distributions) whose stationary
distribution is the desired p(x)

e Construct a Markov chain whose stationary distribution is the
target density = A Xe).

e Run for Tsamples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .

e Key issues:
e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.

© Eric Xing @ CMU, 2006-2011 31

Gibbs sampling

e Gibbs sampling is an MCMC algorithm that is especially
appropriate for inference in graphical models.

e The procedue
e we have variable set X={x,, x,, x3,... x\} for a GM

e at each step one of the variables Xjis selected (at random or according
to some fixed sequences), denote the remaining variables as X;, and its
current value as x (*1

Using the "alarm network" as an example, say at time t we choose X and we
denote the current value assignments of the remaining variables, Xz,
obtained from previous samples, as x¢™ = {xg’“,XA(’*”,XJ‘]’“,XA(;*”}

e the conditonal distribution p(.X}| x f*1) is computed
e avalue x{"is sampled from this distribution

e the sample x{? replaces the previous sampled value of X;in X.

#)

e, x®= Xf[f___’” ng)

© Eric Xing @ CMU, 2006-2011 32
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Why Gibbs Sampling is Simple

e Markov-Blanket

e Avariable is independent from
others, given its parents,
children and children's parents.
d-separation.

= §X| X)= pX) MB(X))

e Gibbs sampling

e Create a random sample.

Every step, choose one MB(A)={B, E, J, M}
variable and sample it by MB(E)={A, B}
P(X|MB(X)) based on previous
sample.
© Eric Xing @ CMU, 2006-2011 33

Example: alarm network again

e To calculate P(J|B1,M1)

ECH e Choose (B1,E0,A1,M1,J1) as a
Earthquake ) = start

e Evidences are B1, M1,
variables are A, E, J.

Burglary

e Choose next variable as A

e Sample A by
P(AIMB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

AL FD R e (B1, EO, A0, M1, J1)
Pl e Choose next random variable

as E, sample E~P(E|B1,A0)

=

© Eric Xing @ CMU, 2006-2011 34
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Example

0z

First 100 iterations of sample3

30 40 a0 60
lteration
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xample :

P(J1 | B1,M1) = 0.90
P(J1| E1,M0) = 0.14

P(EL|J1) =0.01
P(E1L|M1) =0.04
P(E1|M1,J1) = 0.17

Gibbs sampling of alarm netwark

0g9 MW
o8-
07 -
06 - — P{JT|B1 1)
——— PLET MO
05k — PEINN
——— P(E1IM1)
PETIMLAI
ek (Eth1.J1)
03
02 b
e it
01
0 I " i T : 1
0 1 2 3 4 5 B 7 8 9 10
lteration w10t
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Outline :
e Dirichlet Process: From finite mixture to Infinite mixture model
e The Chinese Restaurant Process
e Example: heliotype inference
e Intro to Markov Chain Monte Carlo
e Gibbs sampling
e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
© Eric Xing @ CMU, 2006-2011 39
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Evolutionary Clustering :

e Adapts the number of mixture components over time
e Mixture components can die out
e New mixture components are born at any time

e Retained mixture components parameters evolve according to a Markovian
dynamics

Topics E:\“,\;%‘th

Research "“ _
Papers

1900 2000

© Eric Xing @ CMU, 2006-2011 40
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Temporal DPM [Ahmed and Xing 2008] s
[ J
e The restaurant operates in epochs
e The restaurant is closed at the end of each epoch
e The state of the restaurant at time epoch t depends on that at time
epoch t-1
Can be extended to higher-order dependencies.
© Eric Xing @ CMU, 2006-2011 41
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T=1

Dish eaten at table 3 at time epoch 1
OR the parameters of cluster 3 at time epoch 1

Generative Process

-Customers at time T=1 are seated as before:
- Choose tablejoc N;; and Sample ;.. f(¢; ;)
- Choose a new table K+1 oc a
-Sample ¢y, , ~ G, and Sample x;.. f(dy.,; ;)

© Eric Xing @ CMU, 2006-2011 42
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N;,=1

© Eric Xing @ CMU, 2006-2011

N,,=3

N, =2
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6+a

6+a
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T=2

Sample 4)1,2 ~P(.] ¢1,1)
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T=1

3 6+1+a 6+1+a
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Died out cluster

© Eric Xing @ CMU, 2006-2011

Newly born cluster

At the end of epoch 2

n
[y

T=2

N, ,=1
T=3

© Eric Xing @ CMU, 2006-2011
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Temporal DPM

e Can be extended to model higher-order dependencies

e Can decay dependencies over time
e Pseudo-counts for table k at time t is

w [ -w \
2./ e"N,

JI-w )

Decay factory Number of customers sitting
at table K at time epoch t-w

© Eric Xing @ CMU, 2006-2011
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Ny 3= Z (Ef_Tw N;\,_“_.)
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Results: NIPS 12

Building a simple dynamic topic model

[ ]
e Chain dynamics is as before
e Emission model for document x, ,is:

e Project ¢, over the simplex
o Sample X c;~ Multinomial(. |Logisitic(¢K‘[))
e Unlike LDA here a document belongs to one topic

e Use this model to analyze NIPS12 corpus
e Proceeding of NIPS conference 1987-1999

© Eric Xing @ CMU, 2006-2011 54
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The NIPS trends
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The Big Picture

Fixed-dimensions Dynamic

Model
Dimension

<€
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Appendix:

© Eric Xing @ CMU, 2006-2011 57

Theory of MCMC (optional)

e Definition: Markov Chains
e Given an n-dimensional state space
e Random vector X = (x,...,X;)
e xO=x attime-step t
e xO transitions to x® with prob
P(X®D | O, .. xM) = T(x®D | xO) = T(xO > x©+D)
e Homogenous: chain determined by state x©, fixed transition
kernel T (rows sum to 1)

e Equilibrium: z(x) is a stationary (equilibrium) distribution if

(X") = Z,.2(X) T(x>x").

i.e., is a left eigenvector of the transition matrix #7'T = 7T.

025 0 075
(0.2 05 03)=(02 05 03] 0 07 03
05 05 0

© Eric Xing @ CMU, 2006-2011
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Markov Chains o
e An MC isirreducible if transition graph connected
e An MC is aperiodic if it is not trapped in cycles
e An MC is ergodic (regular) if you can get from state x to x'
in a finite number of steps.
e Detailed balance: prob(x®->x{D) = prob(xtD—->x®)
PO 1XD) = p( )T (| x70)
summing over x®1)
p(x(f)) — zp(x(f—l))r(x(f) |X(f—1))
X1
e Detailed bal - stationary dist exists
© Eric Xing @ CMU, 2006-2011 59
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MCMC Via Metropolis-Hastings .

e Treat the target distribution as stationary distribution

e Sample from an easier proposal distribution, followed by an
acceptance test

e This induces a transition matrix that satisfies detailed balance

e MH proposes moves according to &Q(x |x) and accepts samples with probability
A(x 1.
e The induced transition matrix is

7' l — 1 ll
e Detailed balance means (x> X) = QIXTX)AMX] x)

7(X)QRX [ X)AX'| X) = 7(X)Q(x | X' )A(x [ X")

e Hence the acceptance ratio is

A0 — mi Lfr(x')Q(xu')J
Clx) m'”( ZCOQ(XX)

© Eric Xing @ CMU, 2006-2011 60
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Gibbs sampling

e Gibbs sampling is a special case of MH
e The transition matrix updates each node one at a time using
the following proposal:
Q(x;, %)) = (%", %)) = p(x;' X_;)

e This is efficient since for two reasons
e |tleads to samples that is always accepted

(PO X QUK X) > (X))
Alesx) = . 0)= m'"[1‘ P06 X QAKX > (X)) ]

- min[1 PIX )P ) px, |x,,)J —min(L1)

" p(x X )P px1x,)
Thus T((X/'X—/)%(X/"Xff ):p(x/"lx—/)

e ltis efficient since p(x;|x_;) only depends on the values in X’s Markov
blanket
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