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e How to label them ?

e How many clusters ???
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Image Segmentation o

e How to segment images? |
e Manual segmentation (very expensive)

e Algorithm segmentation
K-means
Statistical mixture models
Spectral clustering

e Problems with most existing
algorithms
e Ignore the spatial information
e Perform the segmentation one image at

atime
e Need to specify the number of segments
a priori
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Object Recognition and Tracking |3
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The Evolution of Science 5
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Clustering as eecs
353
(nonparametric) Bayesian Inference o
e Cluster = Mixture f{;%r/
e Each data point is generated from one Mixture &
W &y o~ P (91‘-)
:
°o° N -Cross Validation
0% o o % -Data hungry!
°e °e -Information theoretic
e e -AIC, MDL, etc.
-Non-Parametric
° 0® o - Manage model uncertainty
g ° © ) - Integrate over different clustering configurations
° ° - Base for many interesting extensions
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Outline

e Dirichlet Process: From finite mixture to Infinite mixture model
e The Chinese Restaurant Process
e Example: heliotype inference

e Intro to Markov Chain Monte Carlo
e Gibbs sampling

e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
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e How to label them ?

e How many clusters ???
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Mixture model: The Generative selt
Process oo
| vixure of c [N
9
-For data point x;
- Sample c; _ Multi(mw)
- Sample x; _ f(¢.))
Number of clusters DOES NOT grow with the data
(XX
o000
H
The Chinese Restaurant Process | :°

e Customers correspond to data points

e Tables correspond to clusters/mixture components

e Dishes correspond to parameter of the mixtures

eee
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The Chinese Restaurant Process

P(c; =k|c;) =

l+a
1
2+a 2+a
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3+ta 3ta
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The rich gets richer effect
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The Chinese Restaurant Process
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Generative Process %

-For data point x;
- Choose table joc N; and Sample ;. f(¢)
- Choose a new table K+1 «c o
- Sample ¢, ~ G, and Sample x;.. f(¢,,,)

© Eric Xing @ CMU, 2006-2011

C

6+a

fecl G- Cie0)
1)

CRP defines an exchangeable
distribution on partitions over an
(infinite) sequence of samples,
such a distribution is formally
known as the Dirichlet Process
(BP)
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More formally ...

e This is a Dirichlet Process Mixture Model
e Three equivalent constructions:

Go
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Measure over Chinese Restaurant The Stick-breaking
Measures Process construction
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Dirichlet Process Sty el s

e A CDF, G, on possible worlds

® @ ® ¥ of random patrtitions follows a
k Dirichlet Process if for any
® measurable finite partition

@ adistribution (¢1,¢21 - ¢m):

® ‘] (G(4). G(#). ... G(¢) ) ~

@ ¢ Dirichlet( aGy(d,), ..., aGO(d,) )
@ =
® @ ®

@ where G, is the base measure

: _ Ve n@)is the scale parameter
MNixtas - Tlfélfg‘birighle@ﬁ@ss G@[}nes@tribution of distribution
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Stick-breaking Process

[Zia-5))

B, ~ Beta(l, &) > 6= 0, 040, s
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Chinese Restaurant Process H

P(c, =k]|c;) = 0
l+a O
1 1 a
2+a 2+a 2+a
= 2 a
3+a 3ta 3+ta
m m, a
i+a-1 i+o-1 i+ta-1

CRP defines an exchangeable distribution on partitions over an (infinite)

sequence of samples, such a distribution is formally known as the Dirichlet
Drocacc (DD © Eric Xing @ CMU, 2006-2011 16




Case study: ancestral Inference
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Essentially a clustering problem, but ...

e Better recovery of the ancestors leads to better haplotyping results
(because of more accurate grouping of common haplotypes)

e True haplotypes are obtainable with high cost, but they can validate model
more subjectively (as opposed to examining saliency of clustering)

e Many other biological/scientiggic%iglitie%
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Background:haplotype ambiguity |2
ATGC
% sequencing
Heterozygous
diploid individual A A )\ )\
TC— TG —AA
Genotype g T—
pairs of alleles, whose 6__\ ~_ /"
associations to chromosomes - T\_ A~
are unknown % 297
~IT ~
_C—~ \\_A—f‘

haplotype h=(h,, h,)
possible associations of
© Eric Xing @ CMU, 2006-2011 alleles to chromosomesg




A Finite (Mixture of ) Allele Model

e The probability of a genotype g: @ | @

p(9)= > p(h,h)p(glh,h,) G,

hy,hyesr | \
Population haplotype j Haplotype Genotyping
pool model model

e Standard settings:
o |H=K<<2 fixed-sized population haplotype pool

o p(hy,hy)=p(hyp(hy)=f,f, Hardy-Weinberg equilibrium

e Problem: K? H?

[ X X ]
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Example: DP-haplotyper e o2

e Clustering human populations
} DP
ofo
@ Likelihood model
(for individual
haplotypes and genotypes)
N

e Inference: Markov Chain Monte Carlo (MCMC)
e Gibbs sampling

~

(for population haplotypes)

} infinite mixture components

e Metropolis Hasting
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The DP Mixture of Ancestral
Haplotypes

I
e The customers around a table in CRP form a cluster

e associate a mixture component (i.e., a population haplotype) with a table

e sample {a, g} at each table from a base measure G, to obtain the
population haplotype and nucleotide substitution frequency for that

component

(] ° e ® @
Adg  {Adgd {Adg {Ag {Adg {Ad
e ® ® ¢

e With p(h|{4, 8}) and p(g|h,,h,), the CRP yields a posterior distribution on
the number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)
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MCMC for Haplotype Inference

e Gibbs sampling for exploring the posterior distribution under
the proposed model

e Integrate out the parameters such as 0 or /1, and sample Cie y Ay
and h
e

p(ci, =k|cpij.ha)«<p(c, =klcr ) ph |ahpiq.0)

Posterior Prior X Likelihood

. CRP

e Gibbs sampling algorithm: draw samples of each random variable to
be sampled given values of all the remaining variables

© Eric Xing @ CMU, 2006-2011 22
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MCMC for Haplotype Inference

1. Sample ¢, 9, from ple}” = kle=") h,a)

e s
o pley” = k=", m,n)p(hy |ar, ¢, h™7)

~x (77?;?‘151 + r,-‘3;c)p(h:) |a;!..l[kfj’15]). fork=1, K +1

2. Sample a, from  plaseh) o [ ph Jare. 10))

i lel
drielesll =

~ Dlan+Ge)T(Bh + let)
Loy + 3, +my)(|B| — 1)’;~t

R(a, Br)

: i (3)
3. Sample h,0 from  p(h], 2 .coag)

e For DP scale parameter «: a vague inverse Gamma prior
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Convergence of Ancestral Inference °

# of ancesiral templates
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Outline :

e Dirichlet Process: From finite mixture to Infinite mixture model

e The Chinese Restaurant Process
e Example: heliotype inference

e Intro to Markov Chain Monte Carlo
e Gibbs sampling

e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
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Monte Carlo methods %:YJW/P(X/XX

Draw random samples from the desired distribution

Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-based

averages
T X Pix)
ELf ()] = N;@_D

Asymptotically exact and easy to apply to arbitrary models

Challenges:

e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?

e how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?

e how to know we've sampled enough?

[ X X ]
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Example: naive sampling o

e Sampling: Construct samples according to probabilities given in a

BN.
Burglary

[Ep—— P
BT IS
E

-T‘ ";;'
2] Gocel

Alarm example: (Choose the right sampling
sequence)

1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
BO. Same for EO. P(A|BO, E0)=<0.001, 0.999>
suppose it is false...

© Eric Xing @ CMU, 2006-2011 28
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Example: naive sampling 5
e Sampling: Construct samples according to probabilities given in a
BN.
Burglary
EO BO AO MO JO
A EO BO A0 MO JO
T A s
TE EO BO A0 MO J1
FOF[ 00
EO BO AO MO JO
EO BO AO MO Jo
o
e EO BO AO MO J0
Alarm example: (Choose the right sampling
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, EO BO AO MO J0
B0. Same for EO. P(A|BO, E0)=<0.001, 0.999> EO BO A0 MO Jo
suppose itis false...
2) Frequency counting: In the samples right, EO BO AO MO JO
PJ|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.
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Example: naive sampling :

e Sampling: Construct samples according to probabilities given in a

Alarm example: (Choose the right sampling EO BO AO MO J0
sequence)

EO BO A0 MO JO
3) what if we want to compute P(J|AL) ?
we have only one sample ... EO BO A0 Mo i
P(JIA1)=P(J,A1)/P(A1)=<0, 1>. EO BO A0 MO Jo
4) what if we want to compute P(J|B1) ? EO BO A0 MO Jo
No such sample available!

EO BO A0 MO JO
P(J|A1)=P(J,B1)/P(B1) can not be defined.

E1l BO Al M1 J1
For a model with hundreds or more
variables, rare events will be very hard to EO BO AD MO J0
garner evough samples even after a long EO BO AO MO J0
time or sampling ...

EO BO A0 MO JO

© Eric Xing @ CMU, 2006-2011
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Monte Carlo methods (cond.) '
e Direct Sampling
e We have seen it.
e Very difficult to populate a high-dimensional state space
e Rejection Sampling
e Create samples like direct sampling, only count samples which is
consistent with given evidences.
[ J
e Markov chain Monte Carlo (MCMC)
o000
o000
s
Markov chain Monte Carlo o

e Samples are obtained from a Markov chain (of
sequentially evolving distributions) whose stationary
distribution is the desired p(x)

e Construct a Markov chain whose stationary distribution is the
target density = A X|e).

e Run for 7samples (burn-in time) until the chain
converges/mixes/reaches stationary distribution.

e Then collect M (correlated) samples x,, .

e Key issues:
e Designing proposals so that the chain mixes rapidly.
e Diagnosing convergence.

© Eric Xing @ CMU, 2006-2011 32
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Gibbs sampling |

. : |
e Gibbs sampling is an MCMC algorithm that is eé’pec%ally
appropriate for inference in graphical models.

) ' -
e The procedue X ~POGLX)
e we have variable set X={x,, x,, x3,... x\} for a GM f’D(f)

e at each step one of the variables X is selected (at random or according
to some fixed sequences), denote the remaining variables as X;, and its
current value as x (*1

Using the "alarm network" as an example, say at time t we choose Xg, andgwe
denote the current value assignments of the remaining variables, X ¢, }7()(}
obtained from previous samples, as  x% = {x§, x{P x¥H xgH}

e the conditonal distribution p(X] x (*V) is computed Oo—6—t
e avalue x(is sampled from this distribution [I/Oﬁ(

e the sample x{? replaces the previous sampled value of X; irj X()) {
—\

[ X X ]

0000

eseo
Why Gibbs Sampling is Simple o

e Markov-Blanket

e Avariable is independent from
others, given its parents,
children and children‘s parents.
d-separation.

= p(X} X )= p(X] MB(X))

e Gibbs sampling

e Create a random sample.

Every step, choose one MB(A)={B, E, J, M}

variable and sample it by MB(E)={A, B}
P(X|MB(X)) based on previous
sample.
© Eric Xing @ CMU, 2006-2011 34
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Example: alarm network again

Burglary

Pl

Earthquake

[{1)]

002

=

ZE0)

-

0
01

To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a
start

Evidences are B1, M1,
variables are A, E, J.

Choose next variable as A

Sample A by
P(A|MB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

(B1, EO, A0, M1, J1)

Choose next random variable
as E, sample E~P(E|B1,A0)
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First 100 iterations of sarmple3

I
20
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30

Iteration

I L I L
60 70 80 90 100
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Example:

og

¥ —

P1 | BT, W)

sarnple?
sample2
sample3

1.4 2 25
Iteration
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PU1 | ET, MO)

samplel
sample2
sample3

4 a B
Iteration
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P(\]l | Bl,Ml) = 090 . Gibbs sampling of alarm network
P(J1| E1,M0) = 0.14 N —
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Outline o

e Dirichlet Process: From finite mixture to Infinite mixture model
e The Chinese Restaurant Process
e Example: heliotype inference

e Intro to Markov Chain Monte Carlo
e Gibbs sampling

e Dynamic Dirichlet Process
e The recurrent Chinese Restaurant Process
e Example: Application: evolutionary clustering of documents
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Evolutionary Clustering :
_ . I
e Adapts the number of mixture components over time
e Mixture components can die out
e New mixture components are born at any time
e Retained mixture components parameters evolve according to a Markovian
dynamics
Topics
Research - .
Papers
1900
© Eric Xing @ CMU, 2006-2011 41
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empora [Ahmed and Xing 2008] °
[ J
e The restaurant operates in epochs
e The restaurant is closed at the end of each epoch
e The state of the restaurant at time epoch t depends on that at time
epoch t-1
Can be extended to higher-order dependencies.
© Eric Xing @ CMU, 2006-2011 42
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=1

Dish eaten at table 3 at time epoch 1
OR the parameters of cluster 3 at time epoch 1

Generative Process

-Customers at time T=1 are seated as before:
- Choose table joc N;; and Sample x;.. f(¢; ;)
- Choose a new table K+1 oc o
- Sample ¢y.; ; ~ G, and Sample x; . f(¢y.; ;)

© Eric Xing @ CMU, 2006-2011 43
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T=2

6+a
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X
X

T=2

Sample ¢,,~ P(.] ¢, ,)
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3 6+1+a
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g

Died out cluster
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Newly born cluster
At the end of epoch 2
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Temporal DPM :
e Can be extended to model higher-order dependencies
e Can decay dependencies over time
e Pseudo-counts for table k at time t is
\W —w \
A
:E: e Nk,t—w
; :
BN
Decay factory Number of customers sitting
at table K at time epoch t-w
© Eric Xing @ CMU, 2006-2011 52
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Results: NIPS 12

e Building a simple dynamic topic model

e Chain dynamics is as before

e Emission model for document x, ,is:

o Project ¢ over the simplex

e Sample xc,;~ Multinomial(.|

Logisitic(d))

e Unlike LDA here a document belongs to one topic

e Use this model to analyze NIPS12 corpus
e Proceeding of NIPS conference 1987-1999

© Eric Xing @ CMU, 2006-2011
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The Big Picture
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Appendix: :
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Theory of MCMC (optional)

Definition: Markov Chains
e Given an n-dimensional state space
e Random vector X = (x,...,X;)
e xO=xattime-stept
e xO transitions to xt*1 with prob
P(x®D | xO, .. x®) = T(x®D | xO) = T(xO 2> xt+D)
Homogenous: chain determined by state x©, fixed transition
kernel T (rows sum to 1)

Equilibrium: z(x) is a stationary (equilibrium) distribution if

(X") = Z,(X) T(X>x").

i.e., is a left eigenvector of the transition matrix #'T = #T.

025 0 075
(0.2 05 03)=(02 05 03) 0 07 03
05 05 O

© Eric Xing @ CMU, 2006-2011

Markov Chains

An MC is irreducible if transition graph connected
An MC is aperiodic if it is not trapped in cycles

An MC is ergodic (regular) if you can get from state x to x'
in a finite number of steps.

Detailed balance: prob(x®->x(-1) = prob(xtH->x®)
p(x(f))r(x(f—l) Ix(f)) — p(x(f—l))r(x(f) |X(f—1))
summing over xt1)

PO) = 3 P IIT (6 )

ez

Detailed bal - stationary dist exists

© Eric Xing @ CMU, 2006-2011 60
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MCMC Via Metropolis-Hastings s
I
e Treat the target distribution as stationary distribution
e Sample from an easier proposal distribution, followed by an
acceptance test
e This induces a transition matrix that satisfies detailed balance
e MH proposes moves according to &Q(x |x) and accepts samples with probability
Ax1%).
e The induced transition matrix is N , ,
e Detailed balance means T x> x) = QX X)Alx| x)
7(X)QX'| X)A(x'| x) = (x")Q(x | X" )A(x | x*)
e Hence the acceptance ratio is
A(X'l X) - mm(]_’”()(l)Q(/\/ll/\/')J
7(X)Q(X'] x)
© Eric Xing @ CMU, 2006-2011 61
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Gibbs sampling :
e Gibbs sampling is a special case of MH
e The transition matrix updates each node one at a time using
the following proposal:
Q((’\//’X—/) - (X/'l’ X—/)) = P(X/'l X—/')
e This is efficient since for two reasons
e It leads to samples that is always accepted
Ve minf 1 2 X QUK X)) > (X, %,)
Alx.) = Grixc)=m "[1’ o0 IR X)) X)) J
- min[l P, 1X,)p(.) plx; | x ,>]: min(t)
"X X )P p(X X)) '
Thus T((x, %) = (%' ,x)) = plx; | X))
o ltis efficient since p(x;|x_;) only depends on the values in X;s Markov
blanket
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