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Class Registration -

e |[F YOU ARE ON THE WAITING LIST: This class is now fully
subscribed. You may want to consider the following options:

o Take the class when it is offered again in the Spring semester;

o Come to the first several lectures and see how the course develops. We will
admit as many students from the waitlist as we can, once we see how many
registered students drop the course during the first two weeks.
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Machine Learning 10-701/15-781

e Class webpage:
e http://www.cs.cmu.edu/~epxing/Class/10701/

Machine Learning
10-700 15780, Fall 2911

Eric Xing

Schoal of Compater Sciescr, Carnegie Mellon Usiversity

+ Time: Monday and Wednesday from 10:30-11:50am
* Location: 7500 Wean Hall
+ Recitations: Tuesdays 5-6:30 pm, NSH 1305 {Tentative)
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Logistics

e Text book

e Chris Bishop, Pattern Recognition and Machine Learning (required)
e Tom Mitchell, Machine Learning
e David Mackay, Information Theory, Inference, and Learning Algorithms

e Mailing Lists:
e To contact the instructors: 10701-instr@cs.cmu.edu
e Class announcements list: 10701-announce@cs.cmu.edu.

o TA:
e Qirong Ho, GHC 8013, Office hours: TBA
e Nan Li, GHC 6505, Office hours: 11:00am-12:00pm
e  Suyash Shringarpure, GHC 8013, Office hours: Wednesday 2:00-3:00pm
e Bin Zhao, GHC 8021, Office hours: Tuesday 3:00-4:00pm
e Gunhee Kim

e Class Assistant:
e Michelle Martin, GHC 8001, x8-5527
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Logistics

e 5 homework assignments: 25% of grade
e Theory exercises
e Implementation exercises

e Final project: 30% of grade
e Applying machine learning to your research area
NLP, IR,, vision, robotics, computational biology ...
e Outcomes that offer real utility and value
Search all the wine bottle labels,
An iPhone app for landmark recognition
e Theoretical and/or algorithmic work
a more efficient approximate inference algorithm
a new sampling scheme for a non-trivial model ...

e 3-stage reports

e Two exams: 20% and 25% of grade each

e Theory exercises and/or analysis. Dates already set (no “ticket already booked”, “l am in a
conference”, etc. excuse ...)

e Policies ...
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What is Learning

Learning is about seeking a predictive and/or executable understanding of
natural/artificial subjects, phenomena, or activities from ...

Apoptosis + Medicine

Grammatical rules

Manufacturing procedures Inference:

patural laws what does this mean?

Any similar article?
NAS
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Machine Learning
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Machine Learning (short)

e Study of algorithms that
improve their performance P
at some task T
with experience E

well-defined learning task: <P, T,E>
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Fetching a stapler from inside an sese

office --- the Stanford STAIR robot o
real time

Machine Learning (long) o

Machine Learning seeks to develop theories and computer systems for

representing;

classifying, clustering, recognizing, organizing;
reasoning under uncertainty;

predicting;

and reacting to

complex, real world data, based on the system's own experience with data,

and (hopefully) under a unified model or mathematical framework, that

can be formally characterized and analyzed

can take into account human prior knowledge

can generalize and adapt across data and domains
can operate automatically and autonomously

and can be interpreted and perceived by human.
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Where Machine Learning is being
used or can be useful?

Pedigree
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Natural language processing and
speech recognition -

o Now most pocket Speech Recognizers or Translators are running
on some sort of learning device --- the more you play/use them, the
smarter they become!

Ty
™ jl

! }jD A fmedpe] oo
=1 4t
000000 s

Recogmse +

Fig. 1.2 Isolated Word Problem
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Object Recognition

e Behind a security camera,
most likely there is a computer
that is learning and/or
checking!
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Robotic Control

e The best helicopter pilot is now a computer!
e itruns a program that learns how to fly and make acrobatic maneuvers by itself!
e no taped instructions, joysticks, or things like ...

A. Ng 2005
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Text Mining

e We want:

e Reading, digesting, and
categorizing a vast text
database is too much for
human!

e
© Eric Xing @ CMU, 2006-2011 15
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Paradigms of Machine Learning | 55

e Supervised Learning
o Given D={X,,Y,}, learn f():Y, =f(X,), s.t. D"ew={xj} = {Yj}

e Unsupervised Learning
o Given p={X,} . leam f():Y, =f(X,). st D"eW:{x,} = {Y}

e Semi-supervised Learning

e Reinforcement Learning
o Given D ={env,actions, rewards, simulator/trace/real game}

policy:e,r »>a
learn ' , st {env,new realgame}= a,,a,,4;....
utility:a,e > r
e Active Learning

« Given p~G() . leam D™ ~G'()andf() . st D" =G'(),policy,{Y, |

[ X X ]
0000
[ X 1
. . [ X X XJ
Machine Learning - Theory T

For the learned F(; @)

e Consistency (value, pattern, ...)
e Bias versus variance

e Sample complexity

e Learning rate

e Convergence

e Error bound

e Confidence

e Stability

o ... ng(lnlﬂl-l-ln(l/(ﬂ)
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Why machine learning? -
Lo
~aed 13 million Wikipedia pages
od 500 million users
flickr 3.6 billion photos
You 24 hours videos uploaded per minute
(X X J
0000
HE
Growth of Machine Learning o

e Machine learning already the preferred approach to
e Speech recognition, Natural language processing

Computer vision

Medical outcomes analysis

Robot control

All software

e This ML niche is growing (why?)

© Eric Xing @ CMU, 2006-2011 20
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Growth of Machine Learning :
e Machine learning already the preferred approach to
e Speech recognition, Natural language processing
e Computer vision
e Medical outcomes analysis
e Robot control
[ )
All software
e This ML niche is growing
e Improved machine learning algorithms
e Increased data capture, networking
e Software too complex to write by hand
e New sensors / 10 devices
e Demand for self-customization to user, environment
© Eric Xing @ CMU, 2006-2011 21
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Elements of Machine Learning .
e Here are some important elements to consider before you start:

e Task:
Embedding? Classification? Clustering? Topic extraction? ...
e Data and other info:
Input and output (e.g., continuous, binary, counts, ...)
Supervised or unsupervised, of a blend of everything?
Prior knowledge? Bias?
e Models and paradigms:
BN? MRF? Regression? SVM?
Bayesian/Frequents ? Parametric/Nonparametric?
e Objective/Loss function:
MLE? MCLE? Max margin?
Log loss, hinge loss, square loss? ...
e Tractability and exactness trade off:
Exact inference? MCMC? Variational? Gradient? Greedy search?
Online? Batch? Distributed?
e Evaluation:
Visualization? Human interpretability? Perperlexity? Predictive accuracy?
e |tis better to consider one element at a time!

© Eric Xing @ CMU, 2006-2011
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Inference

Prediction

Decision-Making under uncertainty

-> Statistical Machine Learning

- Function Approximation: F(|6)?
[ X X ]
[ X X X
0000

. : 3
Classification :

e sickle-cell anemia

+I'—f

+1

© Eric Xing @ CMU, 2006-2011
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Function Approximation .
e Setting:
e Set of possible instances X
e Unknown target function f: X—>Y
e Set of function hypotheses H={ h | h: X—>Y }
e Given:
e Training examples {<x;y;>} of unknown target function f
'”‘3 F
| 00
e Determine: a {QQ 0(,
e Hypothesis h € H that best approximates f 0 0 Oc. |
SE

© Eric Xing @ CMU, 2006-2011 25
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Decision-making as dividing a sels
high-dimensional space -

e Classification-specific Dist.: P(X|Y)
Yt . 9500
f p(X |Y =1) 8e? ‘f;;f“"’oz_{%
=P, (X5 4y, 2y) ~ ;ow% |
580 2T
[ p(x 1Y =2)
= P (X5 i, 2)
e Class prior (i.e., "weight"): P(Y)

13
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The Bayes Rule g
o . !
e What we have just did leads to the following general
expression:
P(X|Y)p(Y
Py | x) = PR
P(X)
This is Bayes Rule
Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
© Eric Xing @ CMU, 2006-2011 27
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Example of a learned decision
[ LX)
[ X J
rule :
e When each class is a normal ...
X2
A Pip4(X)
Popa(X)
= X4
e We can write the decision boundary analytically in some
cases ... homework!!
© Eric Xing @ CMU, 2006-2011 28
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Complex decision boundary

© Eric Xing @ CMU, 2006-2011 29

A Tax-Fraud detection problem:

e What F to use? Query Data
e Hypothesis Refund Metkal Taene hea
No Married |80K ?
e How to use?
© Eric Xing @ CMU, 2006-2011 30
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Apply a Decision Tree to the -

3

Query c
Query Data
Start from the root of tree. P s B
i Status  Income Cheat
M No Married |80K ?
Yes No
NO
Single, Di¥orced Married
o
< 80K > 80K
NO YES

© Eric Xing @ CMU, 2006-2011 31
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Apply Model to Test Data :

Query Data

Refund Marital

- Status

-7 No Married

Taxable
Income Cheat

80K ?

Yes

NO

Married

NO

© Eric Xing @ CMU, 2006-2011
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o000
o000
13
Apply Model to Test Data &
Query Data
Refund Marital Taxable
Status  Income Cheat
» |No Married |80K ?
Yes No <~
NO
Married
NO
< 80K
NO YES
(YY)
o000
o000
85
Apply Model to Test Data :

Query Data

Refund Marital Taxable

Status  Income Cheat

No.-” |Married |80K ?

Yes

NO

NO

© Eric Xing @ CMU, 2006-2011
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Apply Model to Test Data &
Query Data
Refund Marital Taxable
Status  Income Cheat
No Married |80K ?
!
Yes No ,/’/
NO e
Married
NO
NO YES
© Eric Xing @ CMU, 2006-2011 35
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o000
st
Apply Model to Test Data :

Query Data

Refund Marital Taxable

Status  Income Cheat

No Married |80K ?
.
Yes No /,/’
NO
Single, Djforced Married .--~ Assign Cheat to “No”

< 80K

NO YES

© Eric Xing @ CMU, 2006-2011
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A hypothesis for TaxFraud

e Input: a vector of attributes
e  X=[Refund,MarSt,TaxInc]

N
e Output:
e Y= Cheating or Not
1.

] e Each internal node: test one
e H as a procedure:

attribute X
e Each branch from a node:
Yes No selects one value for X;

N6 e Each leaf node: predict Y

Single, Di¥orced Married

o

NO YES

© Eric Xing @ CMU, 2006-2011 37

A Tree to Predict C-Section Risk

e Learned from medical records of 1000 wonman

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal _Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-]1 .90+ .10-
| | Primiparous = 0: [399+,13-1 .97+ .03-

| | Primiparous = 1: [368+,68-] .84+ .16-

| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

© Eric Xing @ CMU, 2006-2011 38
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Expressiveness £
e Decision trees can express any function of the input attributes.
e E.g., for Boolean functions, truth table row — path to leaf:
A B AxorB
F F F
F T T
T F T
T T F
e Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x) but
it probably won't generalize to new examples
e Prefer to find more compact decision trees
© Eric Xing @ CMU, 2006-2011 39
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[ ]

Learning a Decision

|attrib1 Attrib2 Attrib3 Tree_
Yes Large 125K No Induction
No Medium | 100k | No algorithm

No Small 70K No

[ri

1

2

3

4 |ves Medium | 120k | No Inductibn
5 No Large 95K Yes

6 |[No Medium | 60K No \.

7 | Yes Large 220K No Learn

8 [No Small 85K Yes Model

9 |No Medium | 75K No

10 | No Small 90K Yes

Training Set

Apply

Attrib2 Model
1 [No Small 55K 2
12 Yes Medium 80K 2 )
13 | Yes Large 110K > Deduction
14 No Small 95K 2
15 | No Large 67K 2

Test Set

© Eric Xing @ CMU, 2006-2011
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Tid Refund Marital Taxable Sp“ttm,q Attributes
Status  Income Cheat .

1 |Yes Single 125K No l‘,

2 No Married | 100K No |'l

8 No Single 70K No v

4 |Yes Married | 120K No

5 [No Divorced |95K Yes

6 |No Married |60K No

7 |Yes Divorced |220K No

8 No Single 85K Yes

9 |No Married |75K No NO YES

10 |No Single 90K Yes

Training Data

Model: Decision Tree

© Eric Xing @ CMU, 2006-2011
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Another Example of Decision
Tree

NS N )
°<\°° & 00‘)
‘\<\ ) .
5 0 & Single,
Married Di
Tid Refund Marital Taxable ivorced
Status  Income Cheat
NO Refund
1 Yes Single 125K No No
2 No Married | 100K No
3 [No Single 70K No TaxInc
4 |Yes Married | 120K No > 80K
5 No Divorced |95K Yes
NO YES
6 No Married | 60K No
7 |Yes Divorced 220K No
8 No Single 85K Yes
9 [No Married |75K No There could be more than one tree that
10 |No Single  |90K YES fits the same data!

Training Data

© Eric Xing @ CMU, 2006-2011 42
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Top-Down Induction of DT :
Main loop:
1. A « the “best” decision attribute for next node
2. Assign A as decision attribute for node
3. For each value of A, create new descendant of
node
4. Sort training examples to leaf nodes
5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes
Which attribute is best?
[18+,33=] [114,2=]
© Eric Xing @ CMU, 2006-2011 43
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Tree Induction :
e Greedy strategy.
e Split the records based on an attribute test that optimizes certain
criterion.
e [ssues
e Determine how to split the records
How to specify the attribute test condition?
How to determine the best split?
e Determine when to stop splitting
© Eric Xing @ CMU, 2006-2011 44
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Tree Induction :
e Greedy strategy.
e Split the records based on an attribute test that optimizes certain
criterion.
e [ssues
e Determine how to split the records
How to specify the attribute test condition?
How to determine the best split?
e Determine when to stop splitting
© Eric Xing @ CMU, 2006-2011 45
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How to Specify Test Condition? .

e Depends on attribute types
e Nominal
e Ordinal
e Continuous

e Depends on number of ways to split
e 2-way split
e Multi-way split

© Eric Xing @ CMU, 2006-2011
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Splitting Based on Nominal
Attributes

|
e Multi-way split: Use as many partitions as distinct values.

Family ﬂ Luxury
Sports|

e Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Sports, @ ) OR {Family, @
Luxury} {Family} Luxury {Sports}

© Eric Xing @ CMU, 2006-2011 47

Splitting Based on Ordinal
Attributes

e Multi-way split: Use as many partitions as distinct values.

Small % Large
Mediu

e Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Small, @ OR {Medium, @
Medium} {Large} Large} {Small}
e Whataboutthissplit? g (Sie)
Large} {Medium}

© Eric Xing @ CMU, 2006-2011 48
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Splitting Based on Continuous selt
Attributes o
e Different ways of handling
e Discretization to form an ordinal categorical attribute
Static — discretize once at the beginning
Dynamic — ranges can be found by equal interval bucketing, equal
frequency bucketing (percentiles), or clustering.
e Binary Decision: (A <v)or (A>V)
consider all possible splits and finds the best cut
can be more compute intensive
© Eric Xing @ CMU, 2006-2011 49
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Splitting Based on Continuous sels
Attributes ot

Taxable
Income
> 80K?

Taxable
Income?

[10K,25K) [25K,50K) [50K,80K)

(i) Binary split (ii) Multi-way split

© Eric Xing @ CMU, 2006-2011 50
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Tree Induction :
I
e Greedy strategy.
e Split the records based on an attribute test that optimizes certain
criterion.
e |ssues
e Determine how to split the records
How to specify the attribute test condition?
How to determine the best split?
e Determine when to stop splitting
© Eric Xing @ CMU, 2006-2011 51
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How to determine the Best Split .
e Idea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"
000000 000000
00000 1 1 X X1)
Patrons?
Nong Some Full Franch Italian Thai Burger
o000 00 o o 00 o0
o0 0000 L e oo o0
Homogeneous, Non-homogeneous,
Low degree of impurity High degree of impurity
e Greedy approach:
e Nodes with homogeneous class distribution are preferred
e Need a measure of node impurity:
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How to compare attribute?

e Entropy

e Entropy H(X) of a random variable X

N
=Y P(x =1i)log, P(z = i)

e H(X) is the expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

° Why?

Information theory:

Most efficient code assigns -log,P(X=i) bits to encode the message X=I,
So, expected number of bits to code one random X is:

—ZP i)log, P(x =)

[ X X ]
s
. eoo
How to compare attribute? -

e Conditional Entropy

e Specific conditional entropy H(X|Y=v) of X given Y=v :
N
H(X|y=3j)=-)_ Pz =ily = j)log, P(x = ily = j)
i=1

e Conditional entropy H(X|Y) of X given Y :

HX|Y)=- Y Ply=j)log H(X|y = j)

jeVal(y)
e Mututal information (aka information gain) of X and Y :
I(X;Y) = H(X)-H(X|Y)=H(Y)-H(Y|X)
= HX)+H(Y)-H(X,)Y)
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Sample Entropy &
e Sis a sample of training examSIes
e [, is the proportion of positive examples in S
e p_is the proportion of negative examples in S
e Entropy measure the impurity of S
H(S) = —p4 logy py — p-logy p—
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Examples for computing Entropy | =

N
H(X)=— Z P(x =1)logy P(x = 1)

Cl 0
c2 6
C1 1
C2 5
C1 2
Cc2 4

P(C1)=0/6=0 P(C2)=6/6=1
Entropy=-0log0-1log1=-0-0=0

P(C1) = 1/6 P(C2) =5/6
Entropy = — (1/6) log, (1/6) — (5/6) log, (1/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6
Entropy = — (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92
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Information Gain

e Information Gain:

GAIN_, = Entropy(p)— z?] Entropy (i)

Parent Node, p is split into k partitions; n; is number of records in partition i

Gain(S,A) = mutual information between A and target class variable over sample S

e Measures Reduction in Entropy achieved because of the split. Choose the split that achieves
most reduction (maximizes GAIN)

e UsedinID3 and C4.5

e Disadvantage: Tends to prefer splits that result in large #of partitions, each being small but pure.
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Exercise

NS » o
o‘\cp o‘-\o \)00
@ &
& P & N C=[3+,7-] C=[3+,7-]
Tid Refund Marital Taxable Ent=0.8813 Ent=0.8813
1 Yes Single 125K No + -
2 No Married |100K No c=[0+,3] C=[3+,4] C=[2+,2] C=[1+,1] CI[0+4]
3 |No Single | 70K No Ent=0 Ent=0.9852 Ent=1  Ent=1  Ent=0
4 |Yes Married |120K No Gain(C,Refund) Gain(C,M)
. =.8813-(.3x0+.7x.9852) =.8813-(.4x1+.2x1+.40)
5 [No Divorced |95K Yes =.1906 = .2813
6 No Married |60K No
7 |Yes Divorced |220K No
8 No Single 85K Yes
9 |No Married | 75K No Which one should be at the root?
10 [No Single 90K Yes .
< = Choose the best classifier!

Training Data
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Stopping Criteria for Tree 4
. ::.
Induction o
I
e Stop expanding a node when all the records belong to the
same class
e Stop expanding a node when all the records have similar
attribute values
e Early termination (to be discussed later)
. . [ X X ]
Decision Tree Based sels
Classification ot

e Advantages:
e Inexpensive to construct
e Extremely fast at classifying unknown records
e Easy to interpret for small-sized trees
e Accuracy is comparable to other classification techniques for many simple data
sets
e Example: C4.5
e Simple depth-first construction.
e Uses Information Gain
e Sorts Continuous Attributes at each node.
e Needs entire data to fit in memory.
e Unsuitable for Large Datasets.
Needs out-of-core sorting.

e You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
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Which Tree Should We Output? o

Ve
}{\ e D3 performs heuristic
/ £33 search through space of
l decision trees

;{l\?ﬁ ;{‘cgﬂ e |t stops at smallest
N /\\ acceptable tree. Why?

AN\ -

o000

0000

HH
Practical Issues of DT -

e Underfitting and Overfitting

e Missing Values
45

a0t

35r

30r
BE
251

=
o

Will be covered in recitation!

20¢

—— Training set
—-- Testset 7

0 50 100 150 200 250 300
Number of nodes
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Summary: what you should know: °
e Machine Learning is Cool and Useful!!
e Paradigms of Machine Learning.
e Design elements learning
e Theories on learning
e Well posed function approximation problems:
e Instance space, X
e Sample of labeled training data { <x;, y;>}
e Hypothesis space, H={f: X2>Y}
e Learning is a search/optimization problem over H
e Various objective functions
minimize training error (0-1 loss)
among hypotheses that minimize training error, select smallest (?)
e Decision tree learning
e Greedy top-down learning of decision trees (ID3, C4.5, ...)
e Overfitting and tree/rule post-pruning
e Extensions...
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Questions to think about (1) :

e ID3 and C4.5 are heuristic algorithms that search through the
space of decision trees. Why not just do an exhaustive
search?
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Questions to think about (2)

I
e Consider target function f: <x1,x2> - y, where x1 and x2 are

real-valued, y is boolean. What is the set of decision surfaces
describable with decision trees that use each attribute at most
once?
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Questions to think about (3)

e Why use Information Gain to select attributes in decision
trees? What other criteria seem reasonable, and what are the
tradeoffs in making this choice?
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Summary

e Machine Learning is Cool and Useful!!

Paradigms of Machine Learning.
Design elements learning
Theories on learning

e Fundamental theory of classification

Bayes optimal classifier
Instance-based learning: kNN — a Nonparametric classifier

A nonparametric method does not rely on any assumption concerning the structure
of the underlying density function.

Very little “learning” is involved in these methods
Good news:

Simple and powerful methods; Flexible and easy to apply to many problems.

kNN classifier asymptotically approaches the Bayes classifier, which is theoretically the
best classifier that minimizes the probability of classification error.

Bad news:
High memory requirements
Very dependant on the scale factor for a specific problem.

o000

0000

HH
Additional material: °e
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Learning non-linear functions 5
f: X2Y
e X (vector of) continuous and/or discrete vars
e Y discrete vars
e Linear separator
& ¢
e fmight be non-linear function
%0,1 | o1,1
#&0 \ 01,0 | The XORggate Speech recognition
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Hypothesis spaces :
How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"
e E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees
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Notes on Overfitting :
|
e Overfitting results in decision trees that are more complex
than necessary
e Training error no longer provides a good estimate of how well
the tree will perform on previously unseen records
e Which Tree Should We Output?
e Occam'’s razor: prefer the simplest hypothesis that fits the data
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, 113
Occam’s Razor :

e Given two models of similar generalization errors, one should
prefer the simpler model over the more complex model

e For complex models, there is a greater chance that it was
fitted accidentally by errors in data

e Therefore, one should include model complexity when
evaluating a model
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Minimum Description Length sece
(MDL) o

|

X, 0 Xy ?

X3 0 Xz ?

X, 1 A B X3 ?

Xa ?
xn :
Xo | 2

e Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
e Costis the number of bits needed for encoding.
e Search for the least costly model.

e Cost(Data|Model) encodes the misclassification errors.

e Cost(Model) uses node encoding (number of children) plus splitting
condition encoding.

[ X X ]

[ X X X

s
How to Address Overfitting o

e Pre-Pruning (Early Stopping Rule)
e Stop the algorithm before it becomes a fully-grown tree
e Typical stopping conditions for a node:
Stop if all instances belong to the same class
Stop if all the attribute values are the same
e More restrictive conditions:
Stop if number of instances is less than some user-specified threshold

Stop if class distribution of instances are independent of the available
features (e.g., using y 2 test)

Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

© Eric Xing @ CMU, 2006-2011 74

37



How to Address Overfitting...

e Post-pruning
e Grow decision tree to its entirety
e Trim the nodes of the decision tree in a bottom-up fashion

e If generalization error improves after trimming, replace sub-tree by a leaf
node.

e Class label of leaf node is determined from majority class of instances in
the sub-tree

e Can use MDL for post-pruning

. . . . [ X X ]
Handling Missing Attribute sels
Values '

e Missing values affect decision tree construction in
three different ways:
e Affects how impurity measures are computed
e Affects how to distribute instance with missing value to child nodes
e Affects how a test instance with missing value is classified
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Computing Impurity Measure c
Tid Refund Marital Taxable Before Splitting: !
Status  Income Class Entropy(Parent)
- Single | 125K = =-0.310g(0.3)-(0.7)log(0.7) = 0.8813
2 No Married | 100K No Class || Class
3 |No Single  |70K No =Yes|| = No
. Refund=Yes 0 3
4 |Yes Married | 120K No
; Refund=No 2 4
5 No Divorced | 95K Yes Refund=2 1 0
6 No Married |60K No )
7 |Yes |Divorced |220K  |No Split on Refund:
8 |No Single  |85K Yes Entropy(Refund=Yes) = 0
9 |No Married | 75K No Entropy(Refund=No)
10 |2 Single | 90K Yes = -(2/6)log(2/6) — (4/6)log(4/6) = 0.9183
\ o Entropy(Children)
Missing = 0.3 (0) + 0.6 (0.9183) = 0.551
value ]
Gain = 0.9 x (0.8813 — 0.551) = 0.3303
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Istribute Instances o
Tid Refund Marital Taxable
Status  Income | Class
Tid Refund Marital Taxable
1 |Yes Single  |125K No Status  Income Class
2 |No Married | 100K No 10 |2 Single 90K Yes
3 |No Single 70K No
4 Y Marri 120K
es arried 0 No
5 |No Divorced 95K Yes Yes No
6 |No Married |60K No
7 |Yes |Divorced |220k  |No Class=ves [0+ asg| |Class=Yes |2+6/9
8 |No Single (85K  |Yes Class=No | 3 Class=No 4
9 |No Married | 75K No . .
Probability that Refund=Yes is 3/9
Yes No Probability that Refund=No is 6/9
Assign record to the left child with
Class=Yes | 0O Cheat=Yes | 2 weight = 3/9 and to the right child
Class=No 3 Cheat=No 4 with weight = 6/9
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Classify Instances &
New record: Married | Single Divorced | Total
Tid Refund Marital |Taxable

Status | Income Class Class=No | 3 1 0 4

Class=Yes 6/9 1 1 2.67

Single,
Divorced

NO

N\
Total (\3.69 2 ) 6.67

annnps

--------------- Married +* Probability that Marital Status

= Married is 3.67/6.67

Probability that Marital Status
={Single,Divorced} is 3/6.67
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