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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2011781, Fall 2011

Introduction to ML Introduction to ML 
and and 

Functional ApproximationFunctional ApproximationFunctional ApproximationFunctional Approximation

Eric XingEric Xing
Lecture 1, September 12, 2011

Reading: Mitchell: Chap 1,3
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Class Registration
IF YOU ARE ON THE WAITING LIST: This class is now fully 
subscribed. You may want to consider the following options: y g p

Take the class when it is offered again in the Spring semester; 

Come to the first several lectures and see how the course develops. We will 
admit as many students from the waitlist as we can, once we see how many 
registered students drop the course during the first two weeks. 
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Machine Learning 10-701/15-781
Class webpage:

http://www.cs.cmu.edu/~epxing/Class/10701/
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Logistics
Text book

Chris Bishop, Pattern Recognition and Machine Learning (required)
Tom Mitchell,  Machine Learning
David Mackay,  Information Theory, Inference, and Learning Algorithms 

Mailing Lists: 
To contact the instructors: 10701-instr@cs.cmu.edu 
Class announcements list: 10701-announce@cs.cmu.edu. 

TA:
Qirong Ho, GHC 8013, Office hours: TBA 
Nan Li, GHC 6505, Office hours: 11:00am-12:00pm 
Suyash Shringarpure, GHC 8013, Office hours: Wednesday 2:00-3:00pm
Bin Zhao, GHC 8021, Office hours: Tuesday 3:00-4:00pm 
Gunhee Kim

Class Assistant:
Michelle Martin, GHC 8001, x8-5527
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Logistics
5 homework assignments: 25% of grade

Theory exercises
Implementation exercises 

Final project: 30% of grade
Applying machine learning to your research area

NLP, IR,, vision, robotics, computational biology …

Outcomes that offer real utility and value
Search all the wine bottle labels, 
An iPhone app for landmark recognition

Theoretical and/or algorithmic work 
a more efficient approximate inference algorithma more efficient approximate inference algorithm
a new sampling scheme for a non-trivial model …

3-stage reports 

Two exams: 20% and 25% of grade each
Theory exercises and/or analysis. Dates already set (no “ticket already booked”, “I am in a 
conference”, etc. excuse …)

Policies …
© Eric Xing @ CMU, 2006-2011 5

What is Learning
Learning is about seeking a predictive and/or executable understanding of 
natural/artificial subjects, phenomena, or activities from …

Apoptosis + Medicine

Grammatical rules
Manufacturing procedures
Natural laws
…

Inference: 
what does this mean?
Any similar article?Any similar article?
…
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Machine Learning
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Machine Learning (short)

Study of algorithms that
• improve their performance P
• at some task T
• with experience E

well-defined learning task: <P,T,E>
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Fetching a stapler from inside an 
office --- the Stanford STAIR robot

© Eric Xing @ CMU, 2006-2011 9

Machine Learning (long)
Machine Learning seeks to develop theories and computer systems for

tirepresenting;
classifying, clustering, recognizing, organizing;
reasoning under uncertainty;
predicting;
and reacting to
…

complex, real world data, based on the system's own experience with data, 
and (hopefully) under a unified model or mathematical framework thatand (hopefully) under a unified model or mathematical framework, that

can be formally characterized and analyzed 
can take into account human prior knowledge
can generalize and adapt across data and domains
can operate automatically and autonomously
and can be interpreted and perceived by human.
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Where Machine Learning is being 
used or can be useful?

Speech recognitionSpeech recognition

Information retrievalInformation retrieval

Computer visionComputer vision

Robotic controlRobotic control

PlanningPlanning

GamesGames

EvolutionEvolution

PedigreePedigree

© Eric Xing @ CMU, 2006-2011 11

Natural language processing and 
speech recognition

Now most pocket Speech Recognizers or Translators are running 
on some sort of learning device --- the more you play/use them, the 
smarter they become!
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Object Recognition
Behind a security camera, 
most likely there is a computer 
that is learning and/or 
checking!

© Eric Xing @ CMU, 2006-2011 13

Robotic Control
The best helicopter pilot is now a computer! 

it runs a program that learns how to fly and make acrobatic maneuvers by itself! p g y y
no taped instructions, joysticks, or things like …

A. Ng 2005

© Eric Xing @ CMU, 2006-2011 14
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Text Mining

Reading digesting and

We want:

Reading, digesting, and 
categorizing a vast text 
database is too much for 
human!

© Eric Xing @ CMU, 2006-2011 15

Bioinformatics

g g g g ggg g ggg g g g gg g g g g g g gg g g gg g gg g gg g
cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc
ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg
attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta
ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca
cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc
actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca
tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata
catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg
tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc
aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt
tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt
tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat
agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc
gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt
gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga
accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag
ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag
aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg
attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtacattgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac
aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc
ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc
ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc
gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg
ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctcwhereisthegenetgattaaaaatatcctttaagaaagcccatgggtataactt
actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg
aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg
ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa
cccagcatattttacgtaaaaacaaaacggtaatgcgaacataacttatttattggggcccggaccgcaaaccggccaaacgcgtttgcacccataaaaacataagggcaacaaaaaaattgttaagctgttgtttatttttgcaatcgaaa
cgctcaaatagctgcgatcactcgggagcagggtaaagtcgcctcgaaacaggaagctgaagcatcttctataaatacactcaaagcgatcattccgaggcgagtctggttagaaatttacatggactgcaaaaaggtatagccccacaaac
cacatcgctgcgtttcggcagctaattgccttttagaaattattttcccatttcgagaaactcgtgtgggatgccggatgcggctttcaatcacttctggcccgggatcggattgggtcacattgtctgcgggctctattgtctcgatccgc
ggcgcagttcgcgtgcttagcggtcagaaaggcagagattcggttcggattgatgcgctggcagcagggcacaaagatctaatgactggcaaatcgctacaaataaattaaagtccggcggctaattaatgagcggactgaagccactttgg
attaaccaaaaaacagcagataaacaaaaacggcaaagaaaattgccacagagttgtcacgctttgttgcacaaacatttgtgcagaaaagtgaaaagcttttagccattattaagtttttcctcagctcgctggcagcacttgcgaatgta
ctgatgttcctcataaatgaaaattaatgtttgctctacgctccaccgaactcgcttgtttgggggattggctggctaatcgcggctagatcccaggcggtataaccttttcgcttcatcagttgtgaaaccagatggctggtgttttggca
cagcggactcccctcgaacgctctcgaaatcaagtggctttccagccggcccgctgggccgctcgcccactggaccggtattcccaggccaggccacactgtaccgcaccgcataatcctcgccagactcggcgctgataaggcccaatgtc
actccgcaggcgtctatttatgccaaggaccgttcttcttcagctttcggctcgagtatttgttgtgccatgttggttacgatgccaatcgcggtacagttatgcaaatgagcagcgaataccgctcactgacaatgaacggcgtcttgtca
tattcatgctgacattcatattcattcctttggttttttgtcttcgacggactgaaaagtgcggagagaaacccaaaaacagaagcgcgcaaagcgccgttaatatgcgaactcagcgaactcattgaagttatcacaacaccatatccata
catatccatatcaatatcaatatcgctattattaacgatcatgctctgctgatcaagtattcagcgctgcgctagattcgacagattgaatcgagctcaatagactcaacagactccactcgacagatgcgcaatgccaaggacaattgccg
tggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggctggagtaaacgaggcgtatgcgcaacctgcacctggcggacgcggcgtatgcgcaatgtgcaattcgcttaccttctcgttgcgggtcaggaactcccagatgggaatggccgatgacgagctgatctgaatgtggaaggcgcccagcaggc
aagattactttcgccgcagtcgtcatggtgtcgttgctgcttttatgttgcgtactccgcactacacggagagttcaggggattcgtgctccgtgatctgtgatccgtgttccgtgggtcaattgcacggttcggttgtgtaaccttcgtgt
tctttttttttagggcccaataaaagcgcttttgtggcggcttgatagattatcacttggtttcggtggctagccaagtggctttcttctgtccgacgcacttaattgaattaaccaaacaacgagcgtggccaattcgtattatcgctgtt
tacgtgtgtctcagcttgaaacgcaaaagcttgtttcacacatcggtttctcggcaagatgggggagtcagtcggtctagggagaggggcgcccaccagtcgatcacgaaaacggcgaattccaagcgaaacggaaacggagcgagcactat
agtactatgtcgaacaaccgatcgcggcgatgtcagtgagtcgtcttcggacagcgctggcgctccacacgtatttaagctctgagatcggctttgggagagcgcagagagcgccatcgcacggcagagcgaaagcggcagtgagcgaaagc
gagcggcagcgggtgggggatcgggagccccccgaaaaaaacagaggcgcacgtcgatgccatcggggaattggaacctcaatgtgtgggaatgtttaaatattctgtgttaggtagtgtagtttcatagactatagattctcatacagatt
gagtccttcgagccgattatacacgacagcaaaatatttcagtcgcgcttgggcaaaaggcttaagcacgactcccagtccccccttacatttgtcttcctaagcccctggagccactatcaaacttgttctacgcttgcactgaaaataga
accaaagtaaacaatcaaaaagaccaaaaacaataacaaccagcaccgagtcgaacatcagtgaggcattgcaaaaatttcaaagtcaagtttgcgtcgtcatcgcgtctgagtccgatcaagccgggcttgtaattgaagttgttgatgag
ttactggattgtggcgaattctggtcagcatacttaacagcagcccgctaattaagcaaaataaacatatcaaattccagaatgcgacggcgccatcatcctgtttgggaattcaattcgcgggcagatcgtttaattcaattaaaaggtag
aaaagggagcagaagaatgcgatcgctggaatttcctaacatcacggaccccataaatttgataagcccgagctcgctgcgttgagtcagccaccccacatccccaaatccccgccaaaagaagacagctgggttgttgactcgccagattg
attgcagtggagtggacctggtcaaagaagcaccgttaatgtgctgattccattcgattccatccgggaatgcgataaagaaaggctctgatccaagcaactgcaatccggatttcgattttctctttccatttggttttgtatttacgtac
aagcattctaatgaagacttggagaagacttacgttatattcagaccatcgtgcgatagaggatgagtcatttccatatggccgaaatttattatgtttactatcgtttttagaggtgttttttggacttaccaaaagaggcatttgttttc
ttcaactgaaaagatatttaaattttttcttggaccattttcaaggttccggatatatttgaaacacactagctagcagtgttggtaagttacatgtatttctataatgtcatattcctttgtccgtattcaaatcgaatactccacatctc
ttgtacttgaggaattggcgatcgtagcgatttcccccgccgtaaagttcctgatcctcgttgtttttgtacatcataaagtccggattctgctcgtcgccgaagatgggaacgaagctgccaaagctgagagtctgcttgaggtgctggtc
gtcccagctggataaccttgctgtacagatcggcatctgcctggagggcacgatcgaaatccttccagtggacgaacttcacctgctcgctgggaatagcgttgttgtcaagcagctcaaggagcgtattcgagttgacgggctgcaccacg
ctgctccttcgctggggattcccctgcgggtaagcgccgcttgcttggactcgtttccaaatcccatagccacgccagcagaggagtaacagagctctgaaaacagttcatggtttaaaaatatcctttaagaaagcccatgggtataactt
actgcgtcctatgcgaggaatggtctttaggttctttatggcaaagttctcgcctcgcttgcccagccgcggtacgttcttggtgatctttaggaagaatcctggactactgtcgtctgcctggcttatggccacaagacccaccaagagcg
aggactgttatgattctcatgctgatgcgactgaagcttcacctgactcctgctccacaattggtggcctttatatagcgagatccacccgcatcttgcgtggaatagaaatgcgggtgactccaggaattagcattatcgatcggaaagtg
ataaaactgaactaacctgacctaaatgcctggccataattaagtgcatacatacacattacattacttacatttgtataagaactaaattttatagtacataccacttgcgtatgtaaatgcttgtcttttctcttatatacgttttataa

Where is the gene?Where is the gene?

© Eric Xing @ CMU, 2006-2011 16
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Paradigms of Machine Learning
Supervised Learning

Given                     ,  learn                         ,  s.t.    { }iiD YX ,= ( )ii XY f:)f( =⋅ { } { }jjD YX        new ⇒=

Unsupervised Learning
Given                     ,  learn                         ,  s.t.    

Semi-supervised Learning 

Reinforcement Learning

{ }ii , ( )ii)( { } { }jj

{ }iD X= ( )ii XY f :)f( =⋅ { } { }jjD YX        new ⇒=

{ }Given

learn                                      ,  s.t.       

Active Learning
Given                 ,  learn                                   ,   s.t. 

{ }gametrace/realsimulator/rewards,,actions,env=D

rea
are

→
→

,:utility
,:policy { } K321 aaa ,,game real new,env ⇒

)(G~ ⋅D { }jD Y policy, ),(G' all ⋅⇒)f( and )(G'~new ⋅⋅D

© Eric Xing @ CMU, 2006-2011 17

Machine Learning - Theory
For the learned F(; θ θ )

PAC Learning Theory

Consistency (value, pattern, …)
Bias versus variance
Sample complexity
Learning rate
Convergence
Error bound

# examples (m)

representational 
complexity (H)

error rate (ε)

(supervised concept learning)

Error bound
Confidence
Stability
…

failure probability (δ)

© Eric Xing @ CMU, 2006-2011 18
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Why machine learning?

13 million Wikipedia pages

500 million users

3.6 billion photos

24 hours videos uploaded per minute 

1

Growth of Machine Learning
Machine learning already the preferred approach to

Speech recognition, Natural language processingSp g , g g p g
Computer vision
Medical outcomes analysis
Robot control
…

This ML niche is growing (why?)

All software 
apps.

ML apps.

g g ( y )

© Eric Xing @ CMU, 2006-2011 20
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Growth of Machine Learning
Machine learning already the preferred approach to

Speech recognition, Natural language processingSp g , g g p g
Computer vision
Medical outcomes analysis
Robot control
…

This ML niche is growing

All software 
apps.

ML apps.

g g
Improved machine learning algorithms 
Increased data capture, networking
Software too complex to write by hand
New sensors / IO devices
Demand for self-customization to user, environment

© Eric Xing @ CMU, 2006-2011 21

Elements of Machine Learning
Here are some important elements to consider before you start:

Task:
Embedding? Classification? Clustering? Topic extraction? …

Data and other info:
Input and output (e.g., continuous, binary, counts, …) 
Supervised or unsupervised, of a blend of everything?
Prior knowledge? Bias? 

Models and paradigms:
BN? MRF? Regression? SVM?
Bayesian/Frequents ?  Parametric/Nonparametric?

Objective/Loss function:
MLE? MCLE? Max margin?MLE? MCLE? Max margin?
Log loss, hinge loss, square loss? …

Tractability and exactness trade off:
Exact inference? MCMC? Variational? Gradient? Greedy search?  
Online? Batch? Distributed? 

Evaluation:
Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

It is better to consider one element at a time!
© Eric Xing @ CMU, 2006-2011 22
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InferenceInference
Prediction
Decision-Making under uncertainty
…

St ti ti l M hi L iStatistical Machine Learning
Function Approximation: F( |θ)?

© Eric Xing @ CMU, 2006-2011 23

Classification
sickle-cell anemia 

© Eric Xing @ CMU, 2006-2011 24
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Function Approximation
Setting:

Set of possible instances Xp
Unknown target function f: X→Y
Set of function hypotheses H={ h | h: X→Y }

Given:
Training examples {<xi,yi>} of unknown target function f

Determine:
Hypothesis h H that best approximates f

© Eric Xing @ CMU, 2006-2011 25

Decision-making as dividing a 
high-dimensional space

Classification-specific Dist.: P(X|Y)

),;(
)|(

111

1
Σ=

=
µrXp

YXp

);(
)|( 2
Σ=

=
µrXp

YXp

Class prior (i.e., "weight"): P(Y)

),;( 222 Σ= µXp

© Eric Xing @ CMU, 2006-2011 26
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The Bayes Rule
What we have just did leads to the following general 
expression:p

This is Bayes Rule

)(
)()|()|(

XP
YpYXPXYP =

© Eric Xing @ CMU, 2006-2011 27

Example of a learned decision 
rule

When each class is a normal …

We can write the decision boundary analytically in some 
cases … homework!!

© Eric Xing @ CMU, 2006-2011 28
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Complex decision boundary

© Eric Xing @ CMU, 2006-2011 29

A Tax-Fraud detection problem: 

What F to use?
H th i Refund Marital Taxable

Query Data

Hypothesis

How to use?

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

© Eric Xing @ CMU, 2006-2011 30
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Apply a Decision Tree to the 
Query

Refund Marital Taxable

Query Data
Start from the root of tree.

Refund

MarStNO

Yes No

MarriedSingle, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 31

Apply Model to Test Data

Refund Marital Taxable

Query Data

Refund

MarStNO

Yes No

MarriedSingle, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 32
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Apply Model to Test Data

Refund Marital Taxable

Query Data

Refund

MarStNO

Yes No

MarriedSingle, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 33

Apply Model to Test Data

Refund Marital Taxable

Query Data

Refund

MarStNO

Yes No

MarriedSingle, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 34



18

Apply Model to Test Data

Refund Marital Taxable

Query Data

Refund

MarStNO

Yes No

Married Single, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 35

Apply Model to Test Data

Refund Marital Taxable

Query Data

Refund

MarStNO

Yes No

Married Single, Divorced

Refund Marital
Status 

Taxable
Income Cheat 

No Married 80K ? 
10 

 

Assign Cheat to “No”

TaxInc

YESNO

NO

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 36
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A hypothesis for TaxFraud 
Input: a vector of attributes 

X=[Refund,MarSt,TaxInc]

Output: 
Y= Cheating or Not

H as a procedure: Each internal node: test one 
attribute Xi

Each branch from a node: 
selects one value for Xi

Each leaf node: predict Y

Refund

MarStNO

Yes No

MarSt

TaxInc

YESNO

NO

NO

MarriedSingle, Divorced

< 80K > 80K

© Eric Xing @ CMU, 2006-2011 37

A Tree to Predict C-Section Risk
Learned from medical records of 1000 wonman
Negative examples are C-sectionsg p

© Eric Xing @ CMU, 2006-2011 38
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Expressiveness
Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:E.g., for Boolean functions, truth table row  path to leaf:

Trivially, there is a consistent decision tree for any training set with 
one path to leaf for each example (unless f nondeterministic in x) but 
it probably won't generalize to new examples

Prefer to find more compact decision trees
© Eric Xing @ CMU, 2006-2011 39

Learning a Decision

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

Apply 
Model

Learn 
Model

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Decision 
Model

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Tree
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Example of a Decision Tree

Splitting Attributes
Tid Refund Marital

Status
Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

Refund

MarStNO

Yes No

MarriedSingle, Divorced

Splitting Attributes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

TaxInc

YESNO

NO
< 80K > 80K

Training Data Model:  Decision Tree
© Eric Xing @ CMU, 2006-2011 41

Another Example of Decision 
Tree

MarSt Single,MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes
YESNO

There could be more than one tree that 
fits the same data!

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Training Data
© Eric Xing @ CMU, 2006-2011 42
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Top-Down Induction of DT

© Eric Xing @ CMU, 2006-2011 43

Tree Induction

Greedy strategy.
Split the records based on an attribute test that optimizes certainSplit the records based on an attribute test that optimizes certain 
criterion.

Issues
Determine how to split the records

How to specify the attribute test condition?
How to determine the best split?How to determine the best split?

Determine when to stop splitting

© Eric Xing @ CMU, 2006-2011 44
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Tree Induction

Greedy strategy.
Split the records based on an attribute test that optimizes certainSplit the records based on an attribute test that optimizes certain 
criterion.

Issues
Determine how to split the records

How to specify the attribute test condition?
How to determine the best split?How to determine the best split?

Determine when to stop splitting

© Eric Xing @ CMU, 2006-2011 45

How to Specify Test Condition?

Depends on attribute types
NominalNominal
Ordinal
Continuous

Depends on number of ways to split
2-way split
Multi way splitMulti-way split

© Eric Xing @ CMU, 2006-2011 46
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Multi-way split: Use as many partitions as distinct values. 

Splitting Based on Nominal 
Attributes

CarType
Family

Sports
Luxury

Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

CarType
{Family, 
Luxury} {Sports}

CarType
{Sports, 
Luxury} {Family} OR

© Eric Xing @ CMU, 2006-2011 47

Size

Splitting Based on Ordinal 
Attributes

Multi-way split: Use as many partitions as distinct values. 
Size

Small
Medium

Large

SizeSize OR

Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

Size
{Medium, 

Large} {Small}
Size

{Small, 
Medium} {Large} OR

Size
{Small, 
Large} {Medium}

What about this split?

© Eric Xing @ CMU, 2006-2011 48
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Splitting Based on Continuous 
Attributes

Different ways of handling
Di ti ti t f di l t i l tt ib tDiscretization to form an ordinal categorical attribute

Static – discretize once at the beginning
Dynamic – ranges can be found by equal interval bucketing, equal 

frequency bucketing (percentiles), or clustering.

Binary Decision: (A < v) or (A ≥ v)
consider all possible splits and finds the best cut
can be more compute intensive

© Eric Xing @ CMU, 2006-2011 49

Splitting Based on Continuous 
Attributes

© Eric Xing @ CMU, 2006-2011 50
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Tree Induction

Greedy strategy.
Split the records based on an attribute test that optimizes certainSplit the records based on an attribute test that optimizes certain 
criterion.

Issues
Determine how to split the records

How to specify the attribute test condition?
How to determine the best split?How to determine the best split?

Determine when to stop splitting

© Eric Xing @ CMU, 2006-2011 51

How to determine the Best Split
Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative"

Greedy approach: 
Nodes with homogeneous class distribution are preferred

Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

© Eric Xing @ CMU, 2006-2011 52
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How to compare attribute?

Entropy
Entropy H(X) of a random variable XEntropy H(X) of a random variable X

H(X) is the expected number of bits needed to encode a randomly drawn 
value of X (under most efficient code)
Why?

Information theory:
Most efficient code assigns -log2P(X=i) bits to encode the message X=I, 
So, expected number of bits to code one random X is:

© Eric Xing @ CMU, 2006-2011 53

How to compare attribute?

Conditional Entropy
Specific conditional entropy H(X|Y=v) of X given Y=v :Specific conditional entropy H(X|Y=v) of X given Y=v :

Conditional entropy H(X|Y) of X given Y :

Mututal information (aka information gain) of X and Y :

© Eric Xing @ CMU, 2006-2011 54
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Sample Entropy

S is a sample of training examplesp g p
p+ is the proportion of positive examples in S
p- is the proportion of negative examples in S
Entropy measure the impurity of S

© Eric Xing @ CMU, 2006-2011 55

Examples for computing Entropy

C1 0 
C2 6 

 

 

C1 1 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

C1 2 
C2 4 

 

 

C2 5 
 

 

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92
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Information Gain
Information Gain: 

⎞⎛ n

Parent Node, p is split into k partitions; ni is number of records in partition i

⎟
⎠
⎞

⎜
⎝
⎛−= ∑

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(

Measures Reduction in Entropy achieved because of the split. Choose the split that achieves 
most reduction (maximizes GAIN)
Used in ID3 and C4.5
Disadvantage: Tends to prefer splits that result in large #of partitions, each being small but pure.

Gain(S,A) = mutual information between A and target class variable over sample S
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Exercise

C=[3+,7-] C=[3+,7-]

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

refund
Ent=0.8813

+ -

C=[0+,3-]
Ent=0

C=[3+,4-]
Ent=0.9852

Gain(C,Refund)
=.8813-(.3x0+.7x.9852)
= .1906

marital
Ent=0.8813

S M

C=[2+,2-]
Ent=1

C=[1+,1-]
Ent=1

Gain(C,M)
=.8813-(.4x1+.2x1+.4x0)
= .2813

D

C=[0+,4-]
Ent=0

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Training Data

Which one should be at the root? 

Choose the best classifier!
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Stopping Criteria for Tree 
Induction

Stop expanding a node when all the records belong to the 
same class

Stop expanding a node when all the records have similar 
attribute values

Early termination (to be discussed later)

© Eric Xing @ CMU, 2006-2011 59

Decision Tree Based 
Classification

Advantages:
Inexpensive to constructp
Extremely fast at classifying unknown records
Easy to interpret for small-sized trees
Accuracy is comparable to other classification techniques for many simple data 
sets

Example: C4.5
Simple depth-first construction.
Uses Information Gain
Sorts Continuous Attributes at each node.
Needs entire data to fit in memory.
Unsuitable for Large Datasets.

Needs out-of-core sorting.

You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
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Which Tree Should We Output?

ID3 performs heuristicID3 performs heuristic 
search through space of 
decision trees
It stops at smallest 
acceptable tree. Why?

Occam’s razor: prefer the simplest Occam s razor: prefer the simplest 
hypothesis that fits the data

© Eric Xing @ CMU, 2006-2011 61

Practical Issues of DT
Underfitting and Overfitting

Missing Values

Will be covered in recitation!Will be covered in recitation!
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Summary: what you should know:

Machine Learning is Cool and Useful!!
Paradigms of Machine Learning.
Design elements learning
Theories on learning

Well posed function approximation problems:
Instance space, X
Sample of labeled training data { <xi, yi>}
Hypothesis space, H = { f: X Y }

Learning is a search/optimization problem over H
Various objective functions

minimize training error (0-1 loss) 
among hypotheses that minimize training error, select smallest (?)

Decision tree learning
Greedy top-down learning of decision trees (ID3, C4.5, ...)
Overfitting and tree/rule post-pruning
Extensions…
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Questions to think about (1)
ID3 and C4.5 are heuristic algorithms that search through the 
space of decision trees.  Why not just do an exhaustive p y j
search?
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Questions to think about (2)
Consider target function f: <x1,x2> y, where x1 and x2 are 
real-valued, y is boolean.  What is the set of decision surfaces , y
describable with decision trees that use each attribute at most 
once?

© Eric Xing @ CMU, 2006-2011 65

Questions to think about (3)
Why use Information Gain to select attributes in decision 
trees?  What other criteria seem reasonable, and what are the ,
tradeoffs in making this choice?  

© Eric Xing @ CMU, 2006-2011 66
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Summary
Machine Learning is Cool and Useful!!

Paradigms of Machine Learning.
D i l t l iDesign elements learning
Theories on learning 

Fundamental theory of classification 
Bayes optimal classifier 
Instance-based learning: kNN – a Nonparametric classifier 
A nonparametric method does not rely on any assumption concerning the structure 
of the underlying density function.

Very little “learning” is involved in these methodsVery little learning  is involved in these methods

Good news:
Simple and powerful methods; Flexible and easy to apply to many problems.
kNN classifier asymptotically approaches the Bayes classifier, which is theoretically the 
best classifier that minimizes the probability of classification error.

Bad news:
High memory requirements
Very dependant on the scale factor for a specific problem.
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Additional material:
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Learning non-linear functions

f: X Y
X (vector of) continuous and/or discrete varsX (vector of) continuous and/or discrete vars
Y discrete vars

Linear separator 

f might be non-linear function

The XOR gate
Speech recognition

© Eric Xing @ CMU, 2006-2011 69

Hypothesis spaces
How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 
trees

© Eric Xing @ CMU, 2006-2011 70
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Notes on Overfitting
Overfitting results in decision trees that are more complex 
than necessaryy

Training error no longer provides a good estimate of how well 
the tree will perform on previously unseen records

Which Tree Should We Output?
Occam’s razor: prefer the simplest hypothesis that fits the dataOccam s razor: prefer the simplest hypothesis that fits the data

© Eric Xing @ CMU, 2006-2011 71

Occam’s Razor
Given two models of similar generalization errors,  one should 
prefer the simpler model over the more complex modelp p p

For complex models, there is a greater chance that it was 
fitted accidentally by errors in data

Therefore, one should include model complexity when 
evaluating a modelevaluating a model
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Minimum Description Length 
(MDL)

A?

B?0

Yes NoX y
X1 1

X y
X ?

Cost(Model,Data) = Cost(Data|Model) + Cost(Model)

A B

B?

C?

10

0

1

B1 B2

C1 C2

X2 0
X3 0
X4 1
… …
Xn 1

X1 ?
X2 ?
X3 ?
X4 ?
… …
Xn ?

Cost(Model,Data)  Cost(Data|Model)  Cost(Model)
Cost is the number of bits needed for encoding.
Search for the least costly model.

Cost(Data|Model) encodes the misclassification errors.
Cost(Model) uses node encoding (number of children) plus splitting 
condition encoding.
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How to Address Overfitting

Pre-Pruning (Early Stopping Rule)
Stop the algorithm before it becomes a fully-grown treeStop the algorithm before it becomes a fully grown tree
Typical stopping conditions for a node:

Stop if all instances belong to the same class
Stop if all the attribute values are the same

More restrictive conditions:
Stop if number of instances is less than some user-specified threshold
Stop if class distribution of instances are independent of the available 
features (e.g., using χ 2 test)( g , g χ )
Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).
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How to Address Overfitting…
Post-pruning

Grow decision tree to its entiretyGrow decision tree to its entirety
Trim the nodes of the decision tree in a bottom-up fashion
If generalization error improves after trimming, replace sub-tree by a leaf 
node.
Class label of leaf node is determined from majority class of instances in 
the sub-tree
Can use MDL for post-pruning

© Eric Xing @ CMU, 2006-2011 75

Handling Missing Attribute 
Values

Missing values affect decision tree construction in 
three different ways:three different ways:

Affects how impurity measures are computed
Affects how to distribute instance with missing value to child nodes
Affects how a test instance with missing value is classified
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Computing Impurity Measure
Tid Refund Marital 

Status 
Taxable 
Income Class

Before Splitting:
Entropy(Parent) 
= -0.3 log(0.3)-(0.7)log(0.7) = 0.8813

1 Yes Single 125K No

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

 Class
= Yes

Class 
= No 

Refund=Yes 0 3 
Refund=No 2 4 

 

Refund=? 1 0 
 

Split on Refund:

 0.3 log(0.3) (0.7)log(0.7)  0.8813

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

Entropy(Refund=Yes) = 0

Entropy(Refund=No) 
= -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

Entropy(Children) 
= 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9 × (0.8813 – 0.551) = 0.3303

Missing 
value
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Distribute Instances
Tid Refund Marital 

Status 
Taxable 
Income Class

1 Y Si l 125K N
Tid Refund Marital Taxable 

Cl1 Yes Single 125K No

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes

Refund
Yes

Status Income Class 

10 ? Single 90K Yes 
10 

No

Class=Yes 2 + 6/9 

Class=No 4 
Class=Yes 0 + 3/9

Class=No 3 g

9 No Married 75K No 
10 

 

Refund
Yes No

Class=Yes 0 

Class=No 3 
 

 

Cheat=Yes 2 

Cheat=No 4 
 

 

 

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with 
weight = 3/9 and to the right child 
with weight = 6/9
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Classify Instances

Married Single Divorced Total

Tid Refund Marital Taxable

New record:

Refund

MarStNO

Yes No

Si l

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Status Income Class

11 No ? 85K ? 
10 

 

TaxInc

YESNO

NO

MarriedSingle, 
Divorced

< 80K > 80K

Probability that Marital Status 
= Married is 3.67/6.67

Probability that Marital Status 
={Single,Divorced} is 3/6.67
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