
10-701 Machine Learning, Fall 2011: Homework 1

Due 10/3 at the beginning of class.

1 Decision Trees [25 points, Qirong]

1.1 Information gain and entropy

When building decision trees, it is often desirable to keep the tree short, as deep (or even full) trees are
prone to overfitting. Because short trees constrain the number of splits we can make, we need to choose more
“desirable” attributes to split on. When the attributes are discrete, information gain (IG) provides a useful
measure of desirability, in that attributes with higher IG result in “purer” data splits. In this question, you
will explore some basic properties of IG, and its relation to entropy H. First, recall some definitions. For
these definitions, assume we have two discrete random variables X,Y that take values in {1, . . . , k}.

• Entropy of X:

H (X) = −
k∑

x=1

p (X = x) log p (X = x)

• Joint entropy of X,Y :

H (X,Y ) = −
k∑

x=1

k∑
y=1

p (X = x, Y = y) log p (X = x, Y = y)

• Entropy of Y conditioned on X = j:

H (Y | X = x) = −
k∑

y=1

p (Y = y | X = x) log p (Y = y | X = x)

• Conditional entropy of Y given X:

H (Y | X) =
k∑

x=1

p (X = x)H (Y | X = x)

• Information gain (also known as mutual information) between X and Y :

IG (X;Y ) = H (X)−H (X | Y )

Using these definitions,

1. [4 points] Show that IG (X;Y ) = IG (Y ;X). What does this tell you about information gain?

2. [4 points] Show that IG (X;Y ) = H (X) +H (Y )−H (X,Y ).

3. [4 points] Show that IG (X;Y ) = H (X,Y )−H (X | Y )−H (Y | X).
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Weather Road Traffic Accident Rate Counts
Sunny Heavy High 17
Sunny Heavy Low 22
Sunny Light High 13
Sunny Light Low 31
Rainy Heavy High 20
Rainy Heavy Low 5
Rainy Light High 12
Rainy Light Low 11

Table 1: Daily weather, road traffic and accident rates

1.2 Building decision trees with information gain

Consider the dataset in Table 1 with 3 binary attributes. Using this dataset, answer the following questions:

1. [3 points] Suppose we want to build a decision tree that predicts the accident rate given weather
and road traffic. Our first order of business is to decide what attribute to split at the root. Without
calculating anything, explain how you would use information gain to decide between splitting on weather
or on road traffic.

2. [3 points] Using your answer to part 1, determine the root attribute. Show your calculations.

3. [3 points] Now suppose the dataset contains a fourth attribute, temperature, that takes on continuous
values. When a decision tree splits on a continuous attribute X, it divides the data into examples where
X ≤ a and examples where X > a, for some chosen threshold a. Assuming the dataset has K unique
values for temperature, how would you determine the optimum threshold a?

4. [4 points] Real world datasets are not always perfect - some contain systematic errors such as duplicated
attributes or attributes with only one value. Furthermore, not all machine learning algorithms are
well-suited to handling such errors. For example, Naive Bayes performs poorly when attributes are
duplicated. When learning decision trees, what happens when there are duplicated attributes? What
about one-value attributes? Explain your answers in terms of information gain.

2 Linear Regression[25 (+10 bonus points), Nan]

In linear regression, we are given training data of the form, D = (X, y) = {(xi, yi)}, i = 1, 2, ..., N, where
xi ∈ R1×M , i.e. xi = (xi,1, · · · , xi,M )T, yi ∈ R, X ∈ RN×M , where row i of X is xi

T, and y = (y1, · · · , yN )T.
Assuming a parametric model of the form: yi = xi

Tβ+ εi, where εi are noise terms from a given distribution,
linear regression seeks to find the parameter vector β that provides the best of fit of the above regression
model. One criteria to measure fitness, is to find β that minimizes a given loss function J(β). In class, we
have shown that if we take the loss function to be the square-error, i.e.:

J1(β) =
∑

i

(yi − xi
Tβ)2 = (Xβ − y)T(Xβ − y) (1)

Then
β∗ = (XTX)−1XTy (2)

Moreover, we have also shown that if we assume that ε1, ..., εN are IID and sampled from the same zero
mean Gaussian that is, εi ∼ N (0, σ2), then the least square estimate is also the MLE estimate for p(y|X;β).

2.1 1-D Regression [19 pt]

Consider the simplest case where the parametric model is of the form: y = ax+b+ε. ε is a noise term following
a zero-mean Gaussian distribution ε ∼ N (0, σ2). We haveN training data points, (xi, yi), i = 1, 2, ..., N, where
xi ∈ R.

(a) [2 pt] Write down the squared-error loss function. Note: Do not use the matrix form. The function
should be described using the 1-D parametric model.
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(b) [6 pt] Calculate the the minimizer, a∗ and b∗, of the lost function, and show that

a∗ =
N (
∑

i yixi)− (
∑

i xi) (
∑

i yi)

N (
∑

i x
2
i )− (

∑
i xi)

2

b∗ =

(∑
i x

2
i

)
(
∑

i yi)− (
∑

i xi) (
∑

i yixi)

N (
∑

i x
2
i )− (

∑
i xi)

2

Show your work. Again, do not use the matrix form. Directly minimizing the loss function in problem
(a).

(c) [2 pt] Write down the MLE formula of the 1-D parametric model.

(d) [4 pt] Show that the least square estimate in problem (a) is the same as the MLE estimate in problem
(c).

(e) [5 pt] Show that the minimizer calculated from problem (b) equals to the matrix form shown in (2).

2.2 Regularization: Ridge and Lasso Regression [6+10 pt]

For this part assume that the noise terms are IID distributed according to N (0, σ2).
You may want to use the following fact

d|βa|
dβa

=


1 if βa > 0
−1 if βa < 0
undefined if βa = 0

(a) [6 pt] Ridge regression: Instead of minimizing J1(β), minimize the following loss function:

JR(β) =
∑

i

(yi − xi
Tβ)2 + λ

M∑
j=1

β2
j = (Xβ − y)T(Xβ − y) + λ ‖ β ‖22 (3)

Derive the value of β∗ that minimizes (3) in closed form. [please, show your work in details to get
full credit]

(b) [Extra 6 pt] Lasso regression: Instead of minimizing J1(β), minimize the following loss function:

JL(β) =
∑

i

(yi − xi
Tβ)2 + λ

M∑
j=1

|βj | = (Xβ − y)T(Xβ − y) + λ ‖ β ‖1 (4)

Assume XTX = I. Derive the value of β∗ that minimizes (4). Hint: There is no closed form result in
some certain range. What does that mean? [please, show you work in details to get full credit]

(c) [Extra 4 pt] Assume XTX = I. Write down the value of β∗ that minimizes (1), (3), and (4) respectively.
Compare and explain how different regularizations shrink the value of parameters.

3 Neural Networks [25 points, Bin]

3.1 Representation

Suppose that you have two types of activation functions at hand:

• Hard threshold

y =
{

1 if w0 +
∑

i wixi ≥ 0
0 otherwise (5)

• Linear
y = w0 +

∑
i

wixi (6)
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Which of the following functions can be exactly represented by a neural network with one hidden layer,
using hard threshold and / or linear activation functions (meaning the 2 layers could use both hard threshold,
both linear, or hard threshold for one layer and linear for the other)? For each case, justify your answer: if
yes, draw the neural network, with choice of activation functions for both levels, and briefly explain how the
function is represented by your neural network; if no, explain why not.

(1) [2 points] Polynomials of degree one

(2) [2 points] Polynomials of degree two

(3) [2 points] Hinge loss y(x) = max(1− x, 0)

(4) [2 points] Reversed hard threshold

y =
{

0 if w0 +
∑

i wixi > 0
−2 otherwise (7)

(5) [2 points] Piece-wise constant function in 1-D

3.2 Decision Boundary

As we discussed in class, one important question we need to ask when learning about a new classifier is what
kind of decision boundaries can this classifier learn. Consider a 2-layer Neural Network, recall from class that
the input aj for a node j is given by:

aj =
∑

i

wjioi (8)

Where, wji is the weight from unit i to unit j, and oi is the activation/output of unit i. The activation
of unit i is the output of a logistic function in this problem :

oi = σ(ai) =
1

1 + exp(−ai)
(9)

(a) (b)

Figure 1: (a) 2-layer NN with logistic activation functions at both the hidden and output layers. (b) A 2-class
dataset: ’+’ and ’o’ marks positive and negative labels respectively.

Consider the classification task shown in figure 1(a) where ’+’ and ’o’ denotes positive and negative
classes, respectively. Consider the 2-layer network in Figure 1(b). This network has 9 weights and a logistic
activation function for both the hidden and output layers.
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(1) [4 points] For each of the following classifiers, state with a one-line explanation whether or not they
can learn the decision boundary illustrated in Figure 1(a): 1-KNN, decision tree, Naive Bayes, and
logistic regression.

(2) [2 point] Express o1 and o2 in terms of x1, x2, w10, w11, w12, w20, w21, w22.

(3) [2 point] Write down the decision rule for this 2-layer NN classifier.

(4) [2 point] Let’s assume that we removed the logistic function form the hidden layer ONLY and instead
used an identity function, i.e o1 = a1 and o2 = a2, while maintaining the same weight values. Write
down the decision rule for this 2-layer NN classifier. Can this neural network learn the correct decision
boundary? Justify your answer.

3.3 Cross-Entropy and Noisy Label

In class we discussed that in order to train a NN we need to define an error function E[W ] (such as the
squared error) that can be minimized using the backpropagation algorithm to find the network weights.
We also discussed that this error function can be driven using the M(C)LE principle based on a signal
plus noise interpretation in the context of a regression setting. Consider a classification task with Data
D = (X, t) = {(xi, ti)}, i = 1, 2, ..., N,. For example, xi might be a face image, and ti is a binary label equals
0 if the face is for a male and 1 if the face is for a female. Now consider a 2-layer NN based on logistic
threshold units at both the hidden and output layers. If we let y denote the real-valued final output of the
network, where y ∈ [0, 1], then we might naturally wish to interpret this output as the probability that the
boolean class label t takes on the value t = 1; that is, y = P (t = 1|x;W ). In this case, as we have done in
logistic regression, it is natural to find the NN weights W using the M(C)LE principle as follows:

WMLE = arg max
w

N∏
i=1

p(ti|xi; w) (10)

(1) [2 points] Show that maximizing (10) is equivalent to minimizing the cross-entropy error function
given by:

E[W ] = −
N∑

i=1

[
ti ln yi + (1− ti)ln(1− yi)

]
(11)

where, yi is the output of the network corresponding to example i.

(2) [3 points] Suppose that there is a probability ε that the class label on a training data point has been
incorrectly set. Assuming independent and identically distributed data, write down the error function
corresponding to the negative log likelihood. Verify that the error function (11) is obtained when ε = 0.
Explain how this error function makes the model robust to incorrectly labeled data, in contrast to the
usual error function (11).

4 Logistic Regression and Naive Bayes[25 points, Suyash]

In this question, you will implement logistic regression and naive bayes classifiers, and compare the two in
solving a two-class classification problem.

1. [5 points] Implement a logistic regression classifier using (i) IRLS and (ii) Gradient ascent. Use the
dataset q4 1.mat which contains both the training sets (Xtrn,Ytrn) and the test sets (Xtst,Ytst), for
training and testing. Report the number of misclassified examples on the test set for each classifier.

2. [5 points] Based on the logistic regression formula you learnt in class, derive the analytical expression
for the decision boundary of the logistic regression classifier. What can you say about the shape of the
decision boundary?

3. [5 points] Implement a gaussian naive bayes classifier as described in class. Use the dataset from the
first part and run the naive bayes classifier on it. Report the number of misclassified examples as before.
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4. [5 points] In class, you proved that under certain conditions, for continuous X and boolean Y, the
conditional probability P (Y |X) for a naive bayes classifier is given by a logistic function with suitable
weights. Prove that the result also holds if both the X and Y variables are boolean.

5. [5 points] Use q4 5.mat as the dataset for this question. Load the dataset, and train the logistic
regression classifier on the training set (Xtr,Ytrn). Plot the conditional probability P (Y = 1|X) over
the region {−3, 6}× {−4, 4} and the decision boundary for the logistic regression classifier. Report the
number of misclassified test examples. Repeat the same for the the naive bayes classifier and compare
the results (Use the gradient ascent implementation of the logistic regression classifier). How can you
explain the difference in results? (Hint: Plot the data and comment.)
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