1 Principal Component Analysis: Eigenfaces

1.1 ORL Face Data
1.2 Calculating Eigenfaces

e Visualize the Eigenfaces:

Projected face images:

1.3 Using Eigenfaces to Classify a Face Image

Classification accuracy — 95%

2 Topic Models [Qirong Ho, 25 points]

Mixture models are an active area of Machine Learning research, with many extensions proposed over the
years. For instance, in the previous homework we explored how to extend a K-Gaussians mixture model
to an infinte Gaussian mixture model. In this question, we are going to explore the “mixtures-of-mixtures”
concept, which forms the basis of a topic model.

2.1 K-bag-of-words Mixture Model

Before we talk about topic models, we first need to introduce the K-bag-of-words mixture model, which is
used to model words in text documents. The K-bag-of-words model begins with K multinomial distributions
(the bags of words). Each represents a probability distribution over words from some vocabulary of length
V. Their parameter vectors are (1, ..., Bk, where each [ is a non-negative V-dimensional vector summing
to 1.

Next, we have N documents numbered 1,..., N, where document ¢ contains M; words. Note that each
document can have a different number of words, and we denote the j-th word of document i by w;; €
{1,...,V} (we use integers to represent words). The words are modeled as follows: for each document i,
we draw a mixture indicator ¢; € {1,..., K} from a prior w. This indicator ¢; tells us which multinomial
generates the words in document ¢. Finally, we draw each word w;; from the multinomial parameter 3;,,
where the draws are made independently (i.e. we don’t care about word order). This gives rise to the
following generative process:

t; ~ Multinomial (1) forie{1,...N}
w;;  ~ Multinomial (5, ) forie{l,...,N} and j € {1,..., M;}.

Notice that this is similar to the K-multinomials mixture model, except that some of the observed data (the
words w;;) share the same mixture indicator ¢;.



In all your answers, please use superscripts to denote vector indices. For example, 7¥ denotes
the k-th element of 7, and t¥ denotes the k-th element of ¢;.

1. [2 points] Using the definition of the multinomial distribution, explicitly write out P (¢; | 7).

Answer:

th
P(t;|m)=]]m

k

2. [3 points| Use conditional independence to simplify the expression P (w;; | t, 5, 7) as much as possible.
In other words, derive an expression P (w;j |t,5,m) = P (w;; | ...) where the ’...” is some subset of
{t,B,7}. The symbols ¢t and 8 without subscripts represent all ¢1,...,t5 and S1,..., Bk respectively.
Hint: try drawing the model as a Bayes net (no need to show this). Your final answer
should depend on every single 31,..., (k.

Answer:

P (wi | t,8,7) = P(wi; | t;, B) (1)

Given ¢;, 8, w;; is conditionally independent of all other variables.

3. [2 points] Using the definition of the multinomial distribution, explicitly write out your simplified
probability statement from part 2.

Answer:

P(wi; | t,6,m) = P(wsy|t;,B)
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2.2 Topic Model with K topics

To develop a topic model', we need to make two changes. First, instead of letting document i take on a
single topic t;, let’s allow it to have a mizture over topics 6;, where 6; is a non-negative K-dimensional vector
summing to 1. Think of 6; as a probability distribution over the K topics represented by (i,...,8x. The
appropriate prior distribution for 6; is a Dirichlet distribution, which will be described shortly.

Second, we now introduce a topic indicator z;; for each word w;;, which determines word w;;’s topic.
Notice how this differs from the K-bag-of-words model: we’re now allowing each word to have its own topic,
instead of restricting it to follow the document’s topic ¢;. Naturally, we shall draw z;; from document i’s
topic distribution 6;.

These two changes give rise to the following generative process:

0; ~ Dirichlet (o) forie{l,...N}
zi; ~ Multinomial (6;) forie{l,...,N} and j € {1,..., M;}
w;; ~ Multinomial (6%) forie{l,...,N} and j € {1,..., M;}.

1For more information, refer to Latent Dirichlet Allocation (Blei et al., 2003).



a > 0 is a scalar parameter for the (symmetric) Dirichlet distribution, defined as
K
L ()] Byl
P (9; = [
k=1
where T' (o) is the Gamma function?. Pay attention to how this model is a “mixture of mixtures” each

0; represents a mixture over topic vocabularies (31, ..., 8k, and there are N such mixtures 61,...,60y, that
together constitute the mixture of mixtures.

1. |2 points] Use conditional independence to simplify the expression P (z;; | 6, «, ) as much as possible.
The symbols 6 and 8 without subscripts represent all 8;,...,0y and 51,..., 8k respectively.

Answer:

P(zij |0,a,8) = P(zi; | ;) (2)
Given 0;, z;; is conditionally independent of ¢, 8 and 8\ {6;}.

2. [2 points] Using the definition of the multinomial distribution, explicitly write out your simplified
probability statement from part 1.

Answer:

P(zi510,0,8) = Pz 6:)
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3. [2 points] Use conditional independence to simplify the expression P (w;; | 2,0, «, ) as much as pos-
sible.

Answer:

P(wij | 2,0,a, 8) = P (wij | zij, B) (3)

Given z;;, 8, w;; is conditionally indpendent of all other variables.

4. |2 points] Using the definition of the multinomial distribution, explicitly write out your simplified
probability statement from part 3.

Answer:

P(wi; | z0,a,8) = P(wi| zj,0)
K ij
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2http://en.wikipedia.org/wiki/Gamma_function



2.3 Interpreting Topic Models

The topic model, like the K-bag-of-words mixture model, is a latent variable model: some of the variables are
unobserved, and we are interested in finding their values. For the K-bag-of-words model, we are interested in
finding the hidden document topics ¢;. For the topic model, we are mostly interested in the hidden document
topic distributions §; (and to some extent the word topics z;;).

1. [2 points] Both ¢; from the K-BoW model and 6; from the topic model say something about document
1’s topical content. In one sentence, state the main difference between ¢;, ;.

Answer:

t; is a single integer between 1 and K, while 0; is a vector of K components that sum to 1.

2. [3 points| Discuss the implications of your answer to part 1. How is topic modeling more useful than
K-BoW? Your answer should be no more than a few sentences.

Answer:

The observation about the differences implies that ¢; represents the single topic that the document is
about while 6; represents the document as a mixture of K topics. Therefore topic modeling allows a
document to be a mixture of multiple topics which is arguably a more natural representation of reality
than the K-BoW which restricts a document to be only about a single topic. Documents more than a
few sentences long are likely to be talking about more than just a single topic, making the assumption
of K-BoW unrealistic.

3. |3 points] In both K-BoW and topic models, the 3 parameters represent vocabularies for each topic
k. We didn’t talk about learning the values of 3, but it turns out that the common learning strategies
(Gibbs sampling or Variational EM) will sometimes produce topics that share words — in other words,
Br > 0 and S; > 0 for some topic k and some topic £. Why is this word sharing useful? Again, keep
your answer brief.

Answer:

Word sharing is useful because a word could have multiple meanings each of which is used commonly
in a different context. For example, the word “web” could be commonly used in technical articles about
the internet (topic:internet) or in articles about spiders (topic:spiders).

4. |2 points] PCA (Principal Component Analysis) can also be used to learn “topics” from a set of
documents. Give at least two differences between PCA and topic models. You don’t have to explain
the differences, just list them.

Answer:

e The contributions of words to a topic can be negative in PCA while they are constrained to be
non-negative and < 1 in topic models.

e The topics obtained from PCA are orthogonal to each other while there is no such restriction on
topics in topic models.



3 Adaboost

3.1 True or False

e (a) False. Adaboost guarantees that an upper bound on the training error never increases, but does
not guarantee that the training error itself never increases.

e (b) False. If the weak learners h; do not perform better than random guessing, i.e. ¢ = 0.5, then
Adaboost will assign them zero weight:
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Thus, the weak learner contributes nothing to the learnt function f (z), so the true error does not
decrease.

3.2 Boosting
e (a) Training samples on the left, error graph (after adding additional test samples) on the right:
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e (b) We can achieve 0 training error in 3 iterations, i.e. 3 weak learners (shown below).
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Proof: Clearly, 1 weak learner cannot achieve 0 training error. Moreover, if we only use the 2 weak
learners in the middle, then we cannot get the learnt Adaboost function f (x) to be positive on all 4
blue points; the 3rd weak learner on the left is required for this to happen.

e (c) Adaboost overfits on the following dataset (left). The train/test split and error graph are shown
on the right. Test points are solid blue/red shapes, while training points are dithered blue/red shapes.
Only 0.2 of the test points are classified correctly.
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e (d) Terminate Adaboost early, before the training error reaches zero. This produces a lower-complexity
classifier (i.e. fewer weak learners), which has more bias but less variance — and hence is less prone to
overfitting. For the dataset in part (c), just one iteration would have given 0.8 test accuracy, but two
or more iterations will give only 0.2 test accuracy.



