
1 Principal Component Analysis: Eigenfaces

1.1 ORL Face Data

1.2 Calculating Eigenfaces

• Visualize the Eigenfaces:

• Face images 1, 5, 20, 30, 40:

Projected face images:

1.3 Using Eigenfaces to Classify a Face Image

Classi�cation accuracy = 95%

2 Topic Models [Qirong Ho, 25 points]

Mixture models are an active area of Machine Learning research, with many extensions proposed over the
years. For instance, in the previous homework we explored how to extend a K-Gaussians mixture model
to an in�nte Gaussian mixture model. In this question, we are going to explore the �mixtures-of-mixtures�
concept, which forms the basis of a topic model.

2.1 K-bag-of-words Mixture Model

Before we talk about topic models, we �rst need to introduce the K-bag-of-words mixture model, which is
used to model words in text documents. The K-bag-of-words model begins with K multinomial distributions
(the bags of words). Each represents a probability distribution over words from some vocabulary of length
V . Their parameter vectors are β1, . . . , βK , where each βk is a non-negative V -dimensional vector summing
to 1.

Next, we have N documents numbered 1, . . . , N , where document i contains Mi words. Note that each
document can have a di�erent number of words, and we denote the j-th word of document i by wij ∈
{1, . . . , V } (we use integers to represent words). The words are modeled as follows: for each document i,
we draw a mixture indicator ti ∈ {1, . . . ,K} from a prior π. This indicator ti tells us which multinomial
generates the words in document i. Finally, we draw each word wij from the multinomial parameter βti ,
where the draws are made independently (i.e. we don't care about word order). This gives rise to the
following generative process:

ti ∼ Multinomial (π) for i ∈ {1, . . . N}
wij ∼ Multinomial (βti) for i ∈ {1, . . . , N} and j ∈ {1, . . . ,Mi}.

Notice that this is similar to the K-multinomials mixture model, except that some of the observed data (the
words wij) share the same mixture indicator ti.
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In all your answers, please use superscripts to denote vector indices. For example, πk denotes
the k-th element of π, and tki denotes the k-th element of ti.

1. [2 points] Using the de�nition of the multinomial distribution, explicitly write out P (ti | π).

Answer:

P (ti | π) =
∏
k

π
tki
k

2. [3 points] Use conditional independence to simplify the expression P (wij | t, β, π) as much as possible.
In other words, derive an expression P (wij | t, β, π) = P (wij | ...) where the '...' is some subset of
{t, β, π}. The symbols t and β without subscripts represent all t1, . . . , tN and β1, . . . , βK respectively.
Hint: try drawing the model as a Bayes net (no need to show this). Your �nal answer
should depend on every single β1, . . . , βK .

Answer:

P (wij | t, β, π) = P (wij | ti, β) (1)

Given ti, β, wij is conditionally independent of all other variables.

3. [2 points] Using the de�nition of the multinomial distribution, explicitly write out your simpli�ed
probability statement from part 2.

Answer:

P (wij | t, β, π) = P (wij | ti, β)

=

K∏
k=1

(
V∏
v=1

(βvk)w
v
ij

)tki

=

K∏
k=1

V∏
v=1

(βvk)w
v
ijt

k
i

2.2 Topic Model with K topics

To develop a topic model1, we need to make two changes. First, instead of letting document i take on a
single topic ti, let's allow it to have a mixture over topics θi, where θi is a non-negative K-dimensional vector
summing to 1. Think of θi as a probability distribution over the K topics represented by β1, . . . , βK . The
appropriate prior distribution for θi is a Dirichlet distribution, which will be described shortly.

Second, we now introduce a topic indicator zij for each word wij , which determines word wij 's topic.
Notice how this di�ers from the K-bag-of-words model: we're now allowing each word to have its own topic,
instead of restricting it to follow the document's topic ti. Naturally, we shall draw zij from document i's
topic distribution θi.

These two changes give rise to the following generative process:

θi ∼ Dirichlet (α) for i ∈ {1, . . . N}
zij ∼ Multinomial (θi) for i ∈ {1, . . . , N} and j ∈ {1, . . . ,Mi}
wij ∼ Multinomial

(
βzij

)
for i ∈ {1, . . . , N} and j ∈ {1, . . . ,Mi}.

1For more information, refer to Latent Dirichlet Allocation (Blei et al., 2003).
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α > 0 is a scalar parameter for the (symmetric) Dirichlet distribution, de�ned as

P (θi | α) =
[Γ (α)]

K

Γ (Kα)

K∏
k=1

(
θki
)α−1

where Γ (α) is the Gamma function2. Pay attention to how this model is a �mixture of mixtures�: each
θi represents a mixture over topic vocabularies β1, . . . , βK , and there are N such mixtures θ1, . . . , θN , that
together constitute the mixture of mixtures.

1. [2 points] Use conditional independence to simplify the expression P (zij | θ, α, β) as much as possible.
The symbols θ and β without subscripts represent all θi, . . . , θN and β1, . . . , βK respectively.

Answer:

P (zij | θ, α, β) = P (zij | θi) (2)

Given θi, zij is conditionally independent of α, β and θ \ {θi}.

2. [2 points] Using the de�nition of the multinomial distribution, explicitly write out your simpli�ed
probability statement from part 1.

Answer:

P (zij | θ, α, β) = P (zij | θi)

=

K∏
k=1

(
θki
)zkij

3. [2 points] Use conditional independence to simplify the expression P (wij | z, θ, α, β) as much as pos-
sible.

Answer:

P (wij | z, θ, α, β) = P (wij | zij , β) (3)

Given zij , β, wij is conditionally indpendent of all other variables.

4. [2 points] Using the de�nition of the multinomial distribution, explicitly write out your simpli�ed
probability statement from part 3.

Answer:

P (wij | z, θ, α, β) = P (wij | zij , β)

=

K∏
k=1

(
V∏
v=1

(βvk)w
v
ij

)zkij

=

K∏
k=1

V∏
v=1

(βvk)w
v
ijz

k
ij

2http://en.wikipedia.org/wiki/Gamma_function
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2.3 Interpreting Topic Models

The topic model, like the K-bag-of-words mixture model, is a latent variable model: some of the variables are
unobserved, and we are interested in �nding their values. For the K-bag-of-words model, we are interested in
�nding the hidden document topics ti. For the topic model, we are mostly interested in the hidden document
topic distributions θi (and to some extent the word topics zij).

1. [2 points] Both ti from the K-BoW model and θi from the topic model say something about document
i's topical content. In one sentence, state the main di�erence between ti, θi.

Answer:

ti is a single integer between 1 and K, while θi is a vector of K components that sum to 1.

2. [3 points] Discuss the implications of your answer to part 1. How is topic modeling more useful than
K-BoW? Your answer should be no more than a few sentences.

Answer:

The observation about the di�erences implies that ti represents the single topic that the document is
about while θi represents the document as a mixture of K topics. Therefore topic modeling allows a
document to be a mixture of multiple topics which is arguably a more natural representation of reality
than the K-BoW which restricts a document to be only about a single topic. Documents more than a
few sentences long are likely to be talking about more than just a single topic, making the assumption
of K-BoW unrealistic.

3. [3 points] In both K-BoW and topic models, the βk parameters represent vocabularies for each topic
k. We didn't talk about learning the values of β, but it turns out that the common learning strategies
(Gibbs sampling or Variational EM) will sometimes produce topics that share words � in other words,
βvk > 0 and βv` > 0 for some topic k and some topic `. Why is this word sharing useful? Again, keep
your answer brief.

Answer:

Word sharing is useful because a word could have multiple meanings each of which is used commonly
in a di�erent context. For example, the word �web� could be commonly used in technical articles about
the internet (topic:internet) or in articles about spiders (topic:spiders).

4. [2 points] PCA (Principal Component Analysis) can also be used to learn �topics� from a set of
documents. Give at least two di�erences between PCA and topic models. You don't have to explain
the di�erences, just list them.

Answer:

• The contributions of words to a topic can be negative in PCA while they are constrained to be
non-negative and < 1 in topic models.

• The topics obtained from PCA are orthogonal to each other while there is no such restriction on
topics in topic models.
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3 Adaboost

3.1 True or False

• (a) False. Adaboost guarantees that an upper bound on the training error never increases, but does
not guarantee that the training error itself never increases.

• (b) False. If the weak learners ht do not perform better than random guessing, i.e. εt = 0.5, then
Adaboost will assign them zero weight:

αt =
1

2
ln

(
1− εt
εt

)
=

1

2
ln 1

= 0.

Thus, the weak learner contributes nothing to the learnt function f (x), so the true error does not
decrease.

3.2 Boosting

• (a) Training samples on the left, error graph (after adding additional test samples) on the right:

• (b) We can achieve 0 training error in 3 iterations, i.e. 3 weak learners (shown below).

Proof: Clearly, 1 weak learner cannot achieve 0 training error. Moreover, if we only use the 2 weak
learners in the middle, then we cannot get the learnt Adaboost function f (x) to be positive on all 4
blue points; the 3rd weak learner on the left is required for this to happen.

• (c) Adaboost over�ts on the following dataset (left). The train/test split and error graph are shown
on the right. Test points are solid blue/red shapes, while training points are dithered blue/red shapes.
Only 0.2 of the test points are classi�ed correctly.
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• (d) Terminate Adaboost early, before the training error reaches zero. This produces a lower-complexity
classi�er (i.e. fewer weak learners), which has more bias but less variance � and hence is less prone to
over�tting. For the dataset in part (c), just one iteration would have given 0.8 test accuracy, but two
or more iterations will give only 0.2 test accuracy.
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