
1 Bayesian network inference

1.1 Variable elimination [12 points]

Consider the Bayesian network shown in Figure 1. Suppose we want to compute the marginal for
node H, i.e, Probability(H=h). We will examine the effect of order of variable elimination on the
amount of computation required. Assume each variable can take only two values.
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Figure 1: Bayesian network for variable elimination

• [5 points] Consider the elimination order: A,B,F,C,D,E,G. Write down the factors that you
will encounter during this elimination. How many additions does it require?

Answer:
Variable to be eliminated Factors encountered Number of additions required

A ma(b, c, f) 23=8

B mb(c, f) 22=4

F mf (c) 2

C mc(d) 2

D md(e, h) 22=4

E me(g, h) 22=4

G mg(h) 2

Total number of additions: 8 + 4 + 2 + 2 + 4 + 4 + 2 = 26.

• [5 points] Consider the elimination order: C,D,F,A,B,E,G. Write down the factors that you
will encounter during this elimination. How many additions does it require?

Answer:
Variable to be eliminated Factors encountered Number of additions required

C mc(a, b, d, f) 24=16

D md(a, b, f, e, h) 25=32

F mf (a, b, e, h) 24=16

A ma(b, e, h) 23=8

B mb(e, h) 22=4

E me(g, h) 22=4

G mg(h) 2

Total number of additions: 16 + 32 + 16 + 8 + 4 + 4 + 2 = 82.

• [2 points] Which elimination order is better in terms of computation and storage?

The first one.
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1.2 Graph construction [9 points]

1. Suppose there is Bayesian network with n vertices X1, · · · , Xn. We want to compute P (X2 =
x). Your task is to draw the edges in the Bayesian network so that the graph has the following
two properties:

Answer:
The graph should be a star where X1 is the center pointing to other variables.

• [2 points] There exists an elimination order such that computing P (X2 = x) takes time
linear in n.

Answer: Elimination order: X3, X4 ... Xn, X1.

• [2 points] There exists an elimination order such that computing P (X2 = x) takes time
exponential in n.

Answer: Elimination order: X1, X3 ... Xn.

Draw the graph ([3 points]) and write the two elimination orders we desire. Note that your
set of edges should be the same for both cases.

2. [2 points] State true or false with brief explanation: If we have learnt a Naive Bayes classifier
with n features and a class label, all of which are boolean, then for computing P (X1 = 0)
there exists an order of elimination of the other variables that takes exponential time in terms
of n.

Answer: True. If you first eliminate the class variable C, then the computation is exponen-
tial.

1.3 Learning Bayes Nets [4 points]

Suppose you want to learn a Bayes net over two binary variables X1 and X2. You have N training

pairs of X1 and X2, given as {(x(1)1 , x
(1)
2 ), · · · , (x(N)

1 , x
(N)
2 )}. For any Bayes net you learn its pa-

rameters using maximum likelihood estimation. Let A denote the BN with no edges, and B denote
the BN with an edge from X1 to X2.

• [2 points] Describe a case when choosing B to model the data is better than choosing A.

Answer: When X1 and X2 are not independent.

• [2 points] Describe a case when choosing A to model the data is better than choosing B.
(Hint: Your choice may be determined by factors other than how well the BN fits the data).

Answer: When X1 and X2 are actually independent, both Bayes nets would be able to learn
the distribution. Then, learning A is easier than learning B.

2 Undirected Graphical Models [25pt, Nan Li]

A Markov Random Field is an undirected graphical model. Unlike Bayesian Networks, undirected
edges in the graph simply give correlations between variables. Figure 2 is a Markov Random Field.
Assume that all the variables are boolean. Each edge in the graph, ∀i, j ∈ {1, 2, 3, 4}, i 6= j, eij =
〈xi, xj〉, corresponds to a potential Ψeij (xi, xj). We will explore the probability distribution encoded
in this graph in this problem.
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2.1 Representation [3 pt]

(a) Please write down the formula to calculate the joint probability of all variables defined by the
above Markov Random Field in terms of the given potentials.
Answer:

P (X1, X2, X3, X4) =
1

Z
Ψe12(X1, X2)Ψe23(X2, X3)Ψe34(X3, X4)Ψe14(X1, X4) (1)

where Z =
∑

X1,X2,X3,X4
Ψe12(X1, X2)Ψe23(X2, X3)Ψe34(X3, X4)Ψe14(X1, X4)

(b) How many parameters do we need to store the potentials in the graph?
Answer: 16

2.2 Independence [?? pt]

(a) What is the Markov blanket of variable x2?
Answer: {X1, X3}

(b) Is x1⊥x3|x2, x4? Please answer yes or no, and briefly explain why.
Answer: Yes. {X2, X4} is the Markov blanket of X1

2.3 Hammersley-Clifford Theorem [?? pt]

Now let’s consider a probability distribution P over x1, x2, x3, x4, which gives probability 1/8 to each
of the following configurations: (0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 1, 1), (1, 1, 1, 1). All other configurations are given probability zero.

(a) Is x1⊥x3|x2, x4 true in the above distribution? Please answer yes or no, and briefly explain
why.
Answer: Yes. We want to show P (X1, X3|X2, X4) = P (X1|X2, X4)P (X3|X2, X4):

Similarly, you can compute P (X1, X3|X2, X4) to show P (X1, X3|X2, X4) = P (X1|X2, X4)P (X3|X2, X4).

(b) The MRF shown in Figure 2 is actually an I-map for P . Based on the Hammersley-Clifford
Theorem taught in class, does this mean that the distribution P factorizes according to the
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Figure 2: A Markov Random Field

3



(X2, X4) X1 = 0 X1 = 1 X3 = 0 X3 = 1

(0, 0) 0.5 0.5 1 0

(0, 1) 1 0 0.5 0.5

(1, 0) 0 1 0.5 0.5

(1, 1) 0.5 0.5 0 1

given Markov Random Field, i.e. can you find a set of potential values for Ψeij(xi,xj) so that
it defines the distribution P? Please answer yes or no. If yes, please show the potentials. If
no, please prove it.
Answer: No, the Hammersley-Clifford Theorem only holds for positive distribution. To
prove this, let’s define

Ψe12(X1 = 0, X2 = 0) = A00

Ψe12(X1 = 0, X2 = 1) = A01

Ψe12(X1 = 1, X2 = 0) = A10

Ψe12(X1 = 1, X2 = 1) = A11

Similarly, define B for Ψe23(X2, X3), C for Ψe34(X3, X4) and D for Ψe14(X1, X4). Since we
know P (0, 0, 1, 0) = 0, according to the factorization, we would expect A00B01C10D00 = 0,
which means at least one of {A00, B01, C10, D00} will have to be 0. However, if either one of
them is 0, this will contradict the distribution P we have. For example, w.l.o.g., let’s assume
A00 = 0. This will lead to P (0, 0, 0, 0) = 0 which contradicts the fact that P (0, 0, 0, 0) = 1

8 .

2.4 Partition Function [8 pt]

To define a probability distribution in an MRF, we need a need a normalization factor Z known
as the partition function. Can we simply renormalize the values in each potential function so that
they sum up to one, and then get rid of the normalization factor Z?

(a) If we scale only one potential function by a positive constant, how does it affect the distribu-
tion defined by the Markov network? Please prove your answer.
Answer: If we scale one potential function by a positive constant, and calculate the nor-
malization factor Z with the updated potential, since both Z and the potential function are
scaled by the same constant, the distribution will not change.

(b) If we scale all factors to sum to 1 locally, does that imply Z = 1? If yes, please prove it. If
no, please give a counter example.
Answer: No. Use the previous model,

Z =

∑
X1,X2

Ψe12(X1, X2)
∑

X2,X3
Ψe23(X2, X3)

∑
X3,X4

Ψe34(X3, X4)
∑

X1,X4
Ψe14(X1, X4)∑

X1,X2,X3,X4
Ψe12(X1, X2)Ψe23(X2, X3)Ψe34(X3, X4)Ψe14(X1, X4)

6= 1

3 SVMs [Qirong Ho, 25 points]

3.1 Feature Mappings

Suppose you are given 6 one-dimensional points: 3 with negative labels x1 = −1, x2 = 0, x3 = 1
and 3 with positive labels x4 = −2, x5 = 2, x6 = 3.
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1. [1 point] Draw the 6 points on the one-dimensional line, using circles to represent the positive
labels and squares to represent the negative labels.

Answer:

Refer to Figure 3

Figure 3: 1-d SVM plots

2. [2 points] The 6 points are not linearly separable. Write down a feature transformation f (x)
such that the transformed points f (x1) , f (x2) , . . . , f (x6) are linearly separable.

Answer:

f(x) = x2 will make the points linearly separable.

3. [2 points] Draw your 6 transformed points from part 2 on the one-dimensional line. Then,
draw the decision boundary given by the hard-margin linear SVM, and indicate which points
are support vectors.

Answer:

Refer to Figure 3

4. [2 points] Your decision boundary from part 3 has the form w0 + w1f (x). Give the values
of w0 and w1.

Answer:

w0 = −5/3, w1 = 2/3

5. [2 points] Now suppose we transform the 6 points to the feature space (x, f (x)), where
f (x) is your feature transformation from part 2. In other words, you now have 6 two-
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dimensional points (x1, f (x1)) , (x2, f (x2)) , . . . , (x6, f (x6)). Draw these 6 points on the two-
dimensional plane, along with the decision boundary given by the hard-margin linear SVM.
Finally, indicate which points are support vectors.

Answer:

Refer to Figure 4

Figure 4: 2-d SVM plot

6. [2 points] Your decision boundary from part 5 has the form w0 + w1x + x2f (x). Give the
values of w0, w1, w2.

Answer:

w0 = −5/3, w1 = 0, w2 = 2/3

7. [2 points] The feature mapping x 7−→ (x, f (x)) in parts 5 and 6 is associated with a kernel
K (x, x′) where x, x′ are points in the original one-dimensional feature space. Write down this
kernel.

Answer:

K
(
x, x′

)
= 〈φ(x), φ(x′)〉
= 〈(x, x2), (x′, x′2))〉
= xx′ + x2x′2
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8. [3 points] What is the VC dimension of the hard-margin linear SVM in the feature space
(x, f (x))? That is to say, what is the largest number of points in (x, f (x)) that can be
shattered by a linear classifier?

Answer:

Since the SVM is a linear hyperplane in the 2-d feature space, its VC dimension is 3.

3.2 Kernels

For each of the figures below, give a kernel that allows the hard-margin linear SVM to classify the
red and blue points perfectly. No need to write down the mathematical form of the kernel, just
state its type.

1. [3 points]

Answer:

A polynomial kernel .

2. [3 points]
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Answer:

A quadratic kernel centered at the center of mass of the red points.

3. [3 points]

Answer:

A gaussian RBF kernel, since a simple polynomial kernel will not be able to separate them.

8


