
10-701 Machine Learning, Fall 2011: Homework 2

Due 10/17 at the beginning of class.

1 Linear regression, model selction [25pt, Nan Li]

In linear regression, we are given training data of the form, D = (X, y) = {(xi, yi)}, i = 1, 2, ..., n,
where xi ∈ R1×p, i.e. xi = (xi,1, · · · , xi,p)T, yi ∈ R, X ∈ Rn×p, where n is number of samples, p is
number of features. Each row i of X is xi

T, and y = (y1, · · · , yn)T.
Least square regression seeks to find θ that minimizes the square-error, i.e.:

J1(θ) =
∑
i

(yi − xi
Tθ)2 = (Xθ − y)T(Xθ − y).

It has an unique solution
θ̂ = (XTX)−1XTy. (1)

where θ̂ is called an estimator of θ. An “estimator” is a statistic of your data (i.e. a function of
your data) which is intended to approximate a parameter of the underlying distribution. There
is a research field called “estimation theory”, which deals with constructing estimators that have
nice properties, like converging to the correct parameter given enough data, and giving confidence
intervals. In this problem we will explore how regularization affects the bias and variance of the
least square regression model.

Let’s assume that p < n, and XTX is invertible. Also assume that our data is generated from
a true model of the form: yi = xiθ + εi ( or in matrix form y = Xθ + ε), where ε1, ..., εn are IID
and sampled from a Gaussian with 0 mean and constant standard deviation, that is εi ∼ N (0, σ2)
(or ε ∼ N (0, σ2I)).

Let’s first check how regularization could change the bias and variance of the estimator θ̂.

1.1 Ridge regression [10 pt]

We know that the original linear regression without any regularization is unbiased, i.e. E[θ̂] = θ.
What about ridge regression? The solution to ridge regression is

θ̂ = (XTX + λI)−1XTy. (2)

Show that θ̂ has Gaussian distribution and write down its mean µ and covariance matrix Σ. You
will see that ridge regression is biased, because E[θ̂] 6= θ.

Hint: if ε ∼ N (0, I) then Aε ∼ N (0, AAT ), where A is any matrix.
Hint: notation is simpler, if you do a Singular Value Decomposition (SVD) to X first.
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1.2 Extra features [10 pt]

Now, let’s move on to see the relation between model complexity and overfitting. Can we keep
increasing our model quality by adding more features in it?

The objective of least square regression is to minimize J1(θ) given D. Assume that besides the
existing feature data, X, we have, we now have access to one more new feature. The feature values
for the given samples are Xnew, where Xnew ∈ Rn×1. Taken together we have a new feature matrix
Xnew = [X Xnew]. For simplicity, let’s assume XT

newXnew = I. Show that with this new feature,
the minimized objective value J1(θ) will be decreased.

1.3 Model Complexity [3 pt]

Does the above result mean that as long as we keep increasing features, we can always get a better
model? Briefly explain why or why not.

1.4 Overfitting [2 pt]

Please suggest one method to address possible overfitting reflected in the above example.

2 Learning Theory [25 points + 3 extra points, Bin]

2.1 PAC Learning

PAC stands for “Probably Approximately Correct” and concerns a nice formalism for deciding how
much data you need to collect in order for a given classifier to achieve a given probability of correct
predictions on a given fraction of future test data.

• [5 points] True or false: (if true, give a 1 sentence justification; if false, give a counter
example.) Within the setting of PAC learning, it is impossible to assure with probability 1
that the concept will be learned perfectly (i.e., with true error = 0), regardless of how many
training examples are provided.

2.2 VC Dimension

For hypothesis class H, its VC dimension is at least d if there exists some samples |S| = d which
is shattered by H. Please note that this does not mean all samples of size d need to be shattered
by H. To show that the VC dimension is at most d, one must show that no sample of size d + 1
could be shattered by H. In this problem, you will calculate the VC-dimension of some hypothesis
classes. Remember you need to show the following 2 steps to prove the VC dimension of H is d:

• There exists a set of d points which can be shattered by H;

• There exists no set of d+ 1 points which can be shattered by H.

You need to show details of how you get the VC dimension in order to get full credit.

(1) [4 points] X = R, H is the union of 2 intervals;

(2) [4 points] X = R2, H is the set of axis-parallel squares (with equal height and width);
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(3) [4 points] X = R, H is the set of functions defined as following:

h(x) = sign(sin(ax+ b)) (3)

where a and b are parameters in h, sign(x) = +1 if x ≥ 0 and sign(x) = −1 otherwise.

(4) [3 extra points] H is a finite hypothesis class such that |H| < ∞. Show that the VC
dimension of H is upper bounded by log2 |H|. (Hint: how many different labelings are there
for a set of size log2 |H|+ 1?)

2.3 The Approximation-Estimation-Optimization Tradeoff

In this problem, we consider a space of input-output pairs (x, y) ∈ X ×Y generated by a probability
distribution P (x, y). We define a loss function l(ŷ, y) (for example, l(ŷ, y) = |ŷ−y|2 as in regression),
to measure the discrepancy between the predicted output ŷ and the real output y. Our target is
to find the function f∗ that minimizes the expected risk

R(f) =

∫
l(f(x), y)dP (x, y) (4)

Usually the distribution P (x, y) is unknown, we are instead given a sample S of n independently
drawn training examples {(xi, yi)}, i = 1, . . . , n. We define the empirical risk

Rn(f) =
1

n

n∑
i=1

l(f(xi), yi) (5)

The learning principle we learned in class consists of first choosing a family F of candidate prediction
functions, then finding the function fn = arg minf∈F Rn(f). Since the optimal function f∗ is usually
unlikely to belong to the family F , we also define f∗F = arg minf∈F R(f). For simplicity, we assume
that f∗, f∗F and fn are well defined and unique. We can then decompose the excess error as

E[R(fn)−R(f∗)] = E[R(f∗F )−R(f∗)] + E[R(fn)−R(f∗F )] = εapp + εest (6)

where the expectation is taken with respect to the random choice of training set. The approximation
error εapp measures how closely functions in F can approximate the optimal solution f∗. The
estimation error εest measures the effect of minimizing the empirical risk Rn(f) instead of the
expected risk R(f).

One flaw of the above decomposition of excess error is that it assumes we find fn that minimizes
the empirical risk Rn(f). However, this procedure is often a computationally expensive operation.
Let us assume that our minimization algorithm returns an approximate solution f̃n that minimizes
the objective function up to a predefined tolerance ρ ≥ 0

Rn(f̃n) < Rn(fn) + ρ (7)

We can then decompose the excess error ε = E[R(f̃n)−R(f∗)] as

ε = E[R(f∗F )−R(f∗)] + E[R(fn)−R(f∗F )] + E[R(f̃n)−R(fn)] = εapp + εest + εopt (8)

We call the additional εopt the optimization error. It reflects the impact of the approximate opti-
mization on the generalization performance.

(1) [8 points] In this question, you will study how approximation error εapp, estimation error εest,
optimization error εopt and computation time T change when one of {F , n, ρ} increases. (In
creasing F means that the new F is a superset of the old F) Fill in table 1 with ↑ indicating
increase, ↓ indicating decrease, and × indicating not affected. Please briefly explain your
answer.
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Table 1: Typical variations when F , n and ρ increase.
F n ρ

εapp ×
εest ×
εopt × ×
T

3 Expectation-Maximization algorithm [Suyash, 25 points]

In this question, we will derive some details about the expectation-maximization (EM) algorithm
and work out an example application.

3.1 True-False Questions [6 points]

Explain whether the following statements are true or false with a single line of explanation.

1. (2 points) The EM algorithm maximizes the complete log-likelihood.

2. (2 points) Even if the complete log-likelihood is multi-modal, EM cannot get stuck in a local
minima.

3. (2 points) The free-energy functional that EM optimizes is a lower bound on the complete
log-likelihood.

3.2 EM and KL divergence [7 points]

3.2.1 Optimizing the free-energy functional [4 points]

Consider the free-energy functional discussed in class that the EM algorithm optimizes. The free-
energy functional is given by:

F (q, θ) =
∑
q(z|x)

q(z|x) log
p(z, x|θ)
q(z|x)

(9)

for any probability distribution q(z). (Note: In this setting, the only random variables are the z
variables). In class, we claimed that

log p(x|θ)− F (q, θ) = KL(q ‖ p(z|x; θ)) (10)

where KL(a ‖ b) =
∑

x a(x) log a(x)
b(x) is called the Kullback-Leibler divergence between two proba-

bility distributions a and b. Show that this result is true.

3.2.2 Optimal value of q(z) in EM [3 points]

Using the result in Equation 10, find the value for q(z) that maximizes F (q, θ). (Hint: KL(a ‖ b) ≥
0, with equality if and only if a = b.)
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3.3 Example of coin-tossing [12 points]

Consider the scenario where a sequence of heads and tails are being generated by tossing two coins
independently. For each toss, the first coin is chosen with probability π and the second coin is
chosen with probability 1− π. The head probabilities of the two coins are given by p1 and p2. The
probabilities π, p1 and p2 are unknown to us and we want to find their values.

Let us represent the result of the N coin tosses by x1, x2, · · · , xN . xi = 1 indicates that that ith

toss came out heads and 0 otherwise. Let z1, z2, · · · , zN indicate the coin which was tossed each
time. For ease of mathematical analysis, suppose that zi = 1 means the first coin was used for the
ith toss and zi = 0 means the second coin was used for the ith toss.

3.3.1 All variables observed

Suppose that we are allowed to observe which coin was used for each toss, i.e, the values of the
variables z1, · · · , zN are known. The expression for the complete log-likelihood of the N coin tosses
is

lc(X,Z;π, p1, p2) = log

N∏
i=1

p(xi, zi;π, p1, p2)

=

N∑
i=1

log
[
πpxi1 (1− p1)1−xi

]zi[(1− π)pxi2 (1− p2)1−xi
]1−zi

=
N∑
i=1

[zi(log π + xi log p1 + (1− xi) log(1− p1))

+ (1− zi)(log(1− π) + xi log p2 + (1− xi) log(1− p2))]

and the maximum likelihood equations for the parameters in this setting are:

π =

∑N
i=1 zi
N

(11)

p1 =

∑N
i=1 zixi∑N
i=1 zi

(12)

p2 =

∑N
i=1(1− zi)xi∑N
i=1(1− zi)

. (13)

3.3.2 Only x variables observed

Suppose we are not allowed to observe which coin was used for each toss, i.e, the value of the
variables z1, · · · , zN are unknown. We will now use the EM algorithm for finding the values of the
unknown parameters.

1. (3 points) Write the expression for the incomplete log-likelihood.

2. (5 points) The E-step for our EM algorithm requires us to compute q∗(z) = p(z|x;π(t), p
(t)
1 , p

(t)
2 )

where the superscript t indicates the value of the parameters at step t. What is the expression

for the conditional probability p(zi = 1|xi;π(t), p(t)1 , p
(t)
2 ) for the random variable zi associated

with the ith toss? Note that your expression should only involve π(t), p
(t)
1 , p

(t)
2 and xi. For

notational convenience, you can drop the superscript t from your expression.
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3. (4 point) We can show that the updates for the parameters π, p1 and p2 in the M-step are
given by

π(t+1) =

∑N
i=1E[zi|x;π(t), p

(t)
1 , p

(t)
2 ]

N
(14)

p
(t+1)
1 =

∑N
i=1E[zi|x;π(t), p

(t)
1 , p

(t)
2 ]xi∑N

i=1E[zi|x;π(t), p
(t)
1 , p

(t)
2 ]

(15)

p
(t+1)
2 =

∑N
i=1(1− E[zi|x;π(t), p

(t)
1 , p

(t)
2 ])xi∑N

i=1(1− E[zi|x;π(t), p
(t)
1 , p

(t)
2 ])

(16)

How are these updates different from the maximum-likelihood expressions derived for the
parameters in the setting where all the variables are observed?

4 K-means (programming) [Qirong Ho, 25 points + 5 bonus points]

The k-means algorithm is one of the most popular unsupervised machine learning tools, thanks to
a combination of simplicity, speed, effectiveness, and perhaps most importantly, visual intuitive-
ness. Many of us can “see” how k-means works, but what is it really doing mathematically? It
turns out that k-means is connected to the following problem: given an integer k and a set of d-
dimensional data points x1, . . . , xn, pick k d-dimensional vectors c1, . . . , ck (referred to as “centers”)
that minimize the potential function

ψ =
n∑
i=1

min
j∈{1,...,k}

‖xi − cj‖2 .

The potential function ψ measures the Euclidean distance between every point xi and its closest
center cj . Minimizing ψ essentially involves picking centers c such that every data point x is close to
some center — a fairly intuitive notion of clustering. Unfortunately, exactly minimizing ψ happens
to be NP-hard (don’t worry if you don’t know what that means). We will soon prove that k-means
finds a local minimum of ψ — in other words, k-means doesn’t necessarily find the best solution to
ψ, but we hope it finds a good one at least.

First, recall the k-means algorithm:

1. Choose initial values for the centers c1, . . . , ck.

2. For each data point xi, let zi be the index of its closest center, e.g. zi = j means cj is the
closest center to xi.

3. For each center cj , set cj to be the mean of the data points closer to it than any other center.

In other words, set cj =
∑n

i=1 δ(zi=j)xi∑n
i=1 δ(zi=j)

, where δ (zi = j) = 1 if zi = j, and 0 otherwise.

4. Repeat steps 2 and 3 until ψ no longer changes.

4.1 K-means finds a local minimum of ψ

Let’s convince ourselves that the k-means algorithm finds a local minimum of ψ. We shall focus on
a single iteration of k-means. Consider the alternative potential function

φ =

n∑
i=1

k∑
j=1

δ (zi = j) ‖xi − cj‖2 .
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Notice that φ is almost equivalent to ψ, except that the minj∈{1,...,k} in ψ has been replaced by
the closest center assignments zi. The key insight is that k-means performs a coordinate-wise
minimization of φ: in step 2, we minimize φ with respect to the closest center assignments zi (while
holding cj fixed), and then in step 3, we minimize φ with respect to the centers cj (while holding
zi fixed).

1. [4 points] Assume the cj are fixed to their values from the previous iteration. Show that
step 2 minimizes φ with respect to all closest center assignments zi. Hint: if you don’t know
where to begin, we’re really asking you to prove the following statement: if you change one
or more of the z1, . . . , zn produced by step 2, then the value of φ will either increase or stay
the same. Notice that the double summation in φ contains nk terms; you should begin by
separating them into k groups, one for each zi.

2. [6 points] Now assume that the zi are fixed to their values from step 2. Show that step 3
minimizes φ with respect to all centers cj . Hint: try differentiating φ with respect to a single
cj .

The alternating minimization on zi and cj guarantees that k-means finds a local minimum of φ.
Moreover, the values of cj at this local minimum of φ (which is a function of z and c) also correspond
to a local minimum of ψ (which is a function of c only). We thus conclude that k-means finds a
local minimum of ψ.

4.2 Implementing k-means

Having convinced ourselves that k-means does something sensible, we shall now evaluate its per-
formance on the dataset faces.csv. Each of the 2429 lines in this file corresponds to a 19 × 19
image of a human face. Every image is represented as a 361-dimensional vector of grayscale values,
in column-major format (i.e. the first 19 numbers correspond to the first column, then the next
19 numbers correspond to the second column, etc.). If you are using MATLAB, you can load
the images using ’data = csvread(’faces.csv’)’, and from there you can display the i-th image
using ’imshow(uint8(reshape(data(i,:),[19 19])))’.

1. [5 points] Implement the k-means algorithm as described earlier. Note that there are two
additional issues we need to consider: how to choose the initial centers c1, . . . , ck, and how
to decide if convergence has been reached in step 4. For this part, we shall pick the initial
centers uniformly at random (with replacement) from the set of data points x1, . . . , xn. As
for convergence, we are not going to use a stopping criterion — rather, we shall visualize the
performance of k-means by plotting the alternative potential φ at every iteration (thus, your
code will need to compute φ).

2. [5 points] Run your implementation 10 times on the faces.csv dataset, using k = 5 centers
and taking 50 iterations for each run (one iteration is a single repeat of steps 2-3). Save the
centers learned by each run, you’ll need them for the next question! Plot φ versus iteration
number for all 10 runs on the same graph. What do you observe?

3. [5 points] From your results in the previous part, find the run that gives the lowest value of
φ at the last (50th) iteration. This is your algorithm’s best run. Using your favorite plotting
software, draw the k = 5 centers from this run as 19 × 19 grayscale images. On MATLAB,
the command ’imshow(uint8(reshape(c,[19 19])))’ will plot the 361-dimensional vector
c as a 19× 19 grayscale image. What do you observe? Do the ’center-faces’ look like faces at
all?
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Submit all written parts and plots as hardcopies at the beginning of lecture, and submit all code by
email to the grading TA (qho AT andrew DOT cmu DOT edu). In particular, you are to provide
scripts that generate all plots.

4.3 Bonus Question: choosing good initial centers with the k-means++ algo-
rithm

In the paper “k-means++: The Advantages of Careful Seeding” (Arthur and Vassilvitskii 2007),
the authors describe a probabilistic initialization scheme for the centers cj . This scheme guarantees
that, in expectation, the potential function φ will take a good value right from the start. The
k-means++ initialization proceeds as follows:

1. Choose an initial center c1 uniformly at random from the data points x1, . . . , xn.

2. Choose the next center cj probabilistically, such that the probability of choosing cj = xi is
D(xi)

2∑n
h=1D(xh)

2 , whereD (x) is the Euclidean distance from x to its nearest center in {c1, . . . , cj−1}.

3. Repeat step 2 until all k centers have been chosen.

We want to compare this initialization scheme with the uniform random initialization from earlier.

1. [Bonus 5 points] Implement the k-means++ initialization, and repeat parts 2 and 3 from
question 4.2. Compare your new plots to your old ones. What do you observe?

Again, please email scripts for generating your plots.
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