
Chapter 7 

NONPARAMETRIC CLASSIFICATION 

AND ERROR ESTIMATION 

After studying the nonparametric density estimates in Chapter 6, we are 
now ready to discuss the problem of how to design nonparumetric clussifiers 
and estimate their classification errors. 

A nonparametric classifier does not rely on any assumption concerning 
the structure of the underlying density function. Therefore, the classifier 
becomes the Bayes classifier if the density estimates converge to the true den- 
sities when an infinite number of samples are used. The resulting error is the 
Bayes error, the smallest achievable error given the underlying distributions. 
As was pointed out in Chapter 1, the Bayes error is a very important parameter 
in pattern recognition, assessing the classifiability of the data and measuring 
the discrimination capabilities of the features even before considering what 
type of classifier should be designed. The selection of features always results 
in a loss of classifiability. The amount of this loss may be measured by com- 
paring the Bayes error in the feature space with the Bayes error in the original 
data space. The same is true for a classifier. The performance of the classifier 
may be compared with the Bayes error in the original data space. However, in 
practice, we never have an infinite number of samples, and, due to the finite 
sample size, the density estimates and, subsequently, the estimate of the Bayes 
error have large biases and variances, particularly in a high-dimensional space. 
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A similar trend was observed in the parametric cases of Chapter 5,  but the 
trend is more severe with a nonparametric approach. These problems are 
addressed extensively in this chapter. 

Both Parzen and kNN approaches will be discussed. These two 
approaches offer similar algorithms for classification and error estimation, and 
give similar results. Also, the voting kNN procedure is included in this 
chapter, because the procedure is very popular, although this approach is 
slightly different from the kNN density estimation approach. 

7.1 General Discussion 

Parzen Approach 

Classifier: As we discussed in Chapter 3, the likelihood ratio classfier 
is given by -InpI(X)/p2(X) ><r, where the threshold t is determined in various 
ways depending on the type of classifier to be designed (e.g. Bayes, Neyman- 
Pearson, minimax, etc.). In this chapter, the true density functions are replaced 
by their estimates discussed in Chapter 6. When the Parzen density estimate 
with a kernel function IC,(.) is used, the likelihood ratio classifier becomes 

where S = {X\’) ,  . . . ,X$!,X\2), . . . ,X$! } is the given data set. Equation (7.1) 
classifies a test sample X into either o1 or 02, depending on whether the left- 
hand side is smaller or larger than a threshold t .  

Error estimation: In order to estimate the error of this classifier from 
the given data set, S, we may use the resubstitution (R) and leave-one-out (L) 
methods to obtain the lower and upper bounds for the Bayes error. In the R 
method, all available samples are used to design the classifier, and the same 
sample set is tested. Therefore, when a sample Xi” from o1 is tested, the fol- 
lowing equation is used. 
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If < is satisfied, Xi!) is correctly classified, and if > is satisfied, Xi” is 
misclassified. The R estimate of the q-error,  cIR, is obtained by testing 
Xi’), . . . ,Xyl ,  counting the number of misclassified samples, and dividing the 
number by N I .  Similarly, &2R is estimated by testing xi2), . . . ,x$!. 

On the other hand, when the L method is applied to test Xi1),  Xi’) must 
be excluded from the design set. Therefore, the numerator of (7.2) must be 
replaced by 

Again, Xi!) ( k = l ,  . . . ,N I )  are tested and the misclassified samples are 
counted. Note that the amount subtracted in (7.3), K~ (0), does not depend on k. 
When an 02-sample is tested, the denominator of (7.2) is modified in the same 
way. 

Typical kernel functions, such as (6.3), generally satisfy ~ ~ ( 0 )  2 K;(Y) 
(and subsequently ~ ~ ( 0 )  2 pj(Y)). Then, 

That is, the L density estimate is always smaller than the R density estimate. 
Therefore, the left-hand side of (7.2) is larger in the L method than in the R 
method, and consequently Xi’) has more of a chance to be misclassified. Also, 
note that the L density estimate can be obtained from the R density estimate by 
simple scalar operations - subtracting K~ (0) and dividing by (N -1). There- 
fore, the computation time needed to obtain both the L and R density estimates 
is almost the same as that needed for the R density estimate alone. 
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H N  Approach 

Classifier: Using the kNN density estimate of Chapter 6, the likelihood 
ratio classifier becomes 

dz(xk:)N~.x) ( k l - l ) N 2  lX2 I 112 0, 

=-n In -In > < r ,  (7.5) 
dI(Xil,)NN,X) ( k 2 - 1 ) N I  IC, wz 

where 11, =n”12r1(n/2+1)IC,  l”2d:’ from (B.l), and df(Y,X) = 
(Y-X)TC;l(Y-X). In order to classify a test sample X, the k l t h  NN from oI 
and the k 2 t h  NN from o2 are found, the distances from X to these neighbors 
are measured, and these distances are inserted into (7.5) to test whether the 
left-hand side is smaller or larger than t .  In order to avoid unnecessary com- 
plexity, k ,  = k2 is assumed in this chapter. 

Error estimation: The classification error based on a given data set S 
can be estimated by using the L and R methods. When Xi1) from o1 is tested 
by the R method, Xi1)  must be included as a member of the design set. There- 
fore, when the kNN’s of Xi’) are found from the wI design set, Xi’’ itself is 
included among these kNN’s.  Figure 7-1 shows how the kNN’s are selected 
and how the distances to the kth NN’s  are measured for k = 2. Note in Fig. 7-1 
that the locus of points equidistant from Xi!) becomes ellipsoidal because the 
distance is normalized by E,. Also, since C l  # C2 in general, two different 
ellipsoids are used for o, and 02. In the R method, Xi1)  and Xi,(, are the 
nearest and second nearest neighbors of Xi1) from o1 , while X,$, and X$& are 
the nearest and second nearest neighbors of Xi1) from 02. Thus, 

On the other hand, in the L method, Xi” is no longer considered a 
member of the design set. Therefore, X$h and X g N  are selected as the nearest 
and second nearest neighbors of Xi’) from 0,. The selection of o2 neighbors 
is the same as before. Thus, 
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Fig. 7-1 Selection of neighbors. 

(7.7) 

Obviously, d I (X!&N,Xl')) 2 d ,  (X#k,Xl')), making the left-hand side of (7.7) 
larger than the left-hand side of (7.6). Thus, Xi') is more likely to be 
misclassified in the L method than in R method. 

Also, note that, in order to find the NN sample, the distances to all sam- 
ples must be computed and compared. Therefore, when d,(X$h,Xi!)) is 
obtained, d , ( X g N , X & ' ) )  must also be available. This means that the computa- 
tion time needed to get both the L and R results is practically the same as the 
time needed for the R method alone. 

Voting RNN Procedure 

The kNN approach mentioned above can be modified as follows. Instead 
of selecting the kth NN from each class separately and comparing the distances, 
the kNN's of a test sample are selected from the mixture of classes, and the 
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number of neighbors from each class among the k selected samples is counted. 
The test sample is then classified to the class represented by a majority of the 
kNN’s. That is, 

k j = m a x { k l ,  . . . ,  k L )  + X E O ,  (7.8) 

kI+. . .+k, = k , 

where kj is the number of neighbors from (i = 1 , .  . . , L )  among the kNN’s .  
In order to avoid confusion between these two rwVN procedures, we will call 
(7.8) the voting kNN procedure and (7.5) the volumetric kNN procedure. 

For the voting kNN procedure, it is common practice to use the same 
metric to measure the distances to samples from all classes, although each class 
could use its own metric. Since the k j ’ s  are integers and a ranking procedure is 
used, it is hard to find a component of (7.8) analogous with the threshold of 
(7.5). 

It can be shown that the volumetric kiVN and voting (2k-1)NN pro- 
cedures give identical classification results for the two-class problem using the 
same metric for both classes. For example, let k and ( 2 k - 1 )  be 3 and 5 respec- 
tively. In the voting 5NN procedure, a test sample is classified to ol, if 3, 4, 
or S of the SNN’s belong to o, .  This is equivalent to saying that the 3rd NN 
from o1 is closer to the test sample than the 3rd N N  from 02.  

7.2 Voting kNN Procedure-Asymptotic Analysis 

In this section, let us study the expected performance of the voting kNN 
procedure. first for the asymptotic case ( N j  = m) and later for the finite sample 
case. 

Twa-Class kNN 

NN: We start our discussion with the simplest case, setting k = 1 and 
L = 2 in (7.8). That is, in order to classify a test sample, X, the NN sample 
XNN is found. Then, X is classified to either o1 or 02, depending on the class 
membership of XNN.  An error occurs when X E o1 but X N N  E 0 2 ,  or when 
X E o2 but X N N  E ol. Therefore, the conditional risk given X and X N N  is 
expressed by 
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where 

qi(X) = Pr ( XEW, I X ) : a posteriori probability . (7.10) 

The 2nd line of (7.9) is obtained because the two events in the first line are 
mutually exclusive. The 3rd line is obtained because X and X N N  are mutually 
independent. When an infinite number of samples is available, X N ~  is located 
so close to X that q i ( X N N )  can be replaced by q i ( X ) .  Thus, the asymptotic con- 
ditional risk of the NN method is 

I.;  (X) = 2q 1 ( X ) q 2 ( X )  = 2 W )  (7.1 1) 

(7.12) 

2NN: When k is even, kl =k2 may occur and a decision cannot be 
made. In this case, we may set a rule that X be rejected and not counted as an 
error. In the simplest case of k = 2, the rejection occurs when X N N & w l  and 
X 2 N N ~ ~ 2 ,  or XNNeo2 and XZNN&al .  On the other hand, X is misclassified, 
when X & o l  but X N N , X w N & o 2 ,  or X E W ~  but X N N , X Z N N & w I .  Therefore, the con- 
ditional risk is 

For the asymptotic case with q i ( X )  = qi(XNN) = qi(XZNN), 

where q I ( X )  + q2(X) = 1 is used. 

RNN: Extending the above discussion to larger values of k, the asymp- 
totic conditional risks for odd k and even k are 
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On the other hand, the conditional Buyes risk given X is 

(7.15) 

(7.16) 

(7.17) 

where the 2nd line is the MacLaurin series expansion of the first line. Using 
(7.15)-(7.17), it is not difficult to prove that these conditional risks satisfy the 
following inequalities, regardless of 6 [ 11. 

(7.18) 

The proof for r* I r; was given in (3.157). Figure 7-2 shows these risks as 
functions of 5. The inequalities of (7.18) can also be seen in Fig. 7-2. In 
addition, is plotted in Fig. 7-2, because E { m )  is the Bhattacharyya 
bound of the Bayes error. Figure 7-2 shows that the kNN risks are better 
bounds than the Bhattacharyya bound. Taking the expectation of these risks 
with respect to X, the corresponding errors can be obtained. Therefore, these 
errors also satisfy the inequalities of (7.18). Thus, 

l *  * * * *  
--Y < r 2  < r 4  I.. , <I-* I.. . 5 r 3  s r l  1 2 r * .  
2 

(7.19) 1 ,  * 
2 

where 

-E 5 &2NN < &:&IN < . . . 5 E* 5 . . . 5 E j N N  5 5 2E* , 

E* = E ( r * ( X ) }  and E;NN = E ( r ; ( X ) } .  (7.20) 

Equation (7.19) indicates that the error of the voting NN procedure is 
less than twice the Bayes error. This is remarkable, considering that the pro- 
cedure does not use any information about the underlying distributions and 
only the class of the single nearest neighbor determines the outcome of the 
decision. 
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Fig. 7-2 Asymptotic risks vs. 5. 

Example 1: Figure 7-3 gives a simple example to demonstrate how the 
voting NN procedure produces an error between the Bayes error and twice the 
Bayes error. If the true Bayes classifier is known, samples 5 and 6 from wI 
and samples 1 and 3 from o2 are misclassified. By the voting N N  procedure, 
these four samples are indeed misclassified, because their N N ’ s  are from the 
other classes. However, some of these misclassified samples ( 1  from w2 and 5 
from 0 1 )  become the NN’s  of samples from the other classes ( 2  from wI and 4 
from a*), and produce additional errors (2 and 4). This may (for 1 and 5) or 
may not (for 3 and 6) occur, depending on the distribution of samples. There- 
fore, roughly speaking, the N N  error is somewhere between the Bayes error 
and twice the Bayes error. Also, Fig. 7-3 shows that only 3 samples are 
misclassified by the voting 2NN procedure. For samples 3, 4, and 5, the votes 
are split and the samples are rejected. 
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t t  t t c  = 4/N 

t t  t e2NN = 3/N 

Fig. 7-3 Example of kNN classification. 

Multiclass NN 

The voting NN procedure can also be applied to general L-class prob- 
lems, in which a test sample is classified to the class of the NN sample. The 
asymptotic conditional risk is 

L L 
4 (XI  = 9 I ( X )  s ; ( X ) + .  . . +9L(X)  c q ; ( X )  

; = I  ; = I  
jt I ; # L  

L L 
= cq;(X)[l-qi(X)I = 1 - Z q ? ( X ) .  

i= l  i = l  

On the other hand, the Bayes conditional risk is 

I-*(x) = I - max{q,(X)j = 1 - q,(x) . 
J 

Using the Schwanz's inequality, 

(7.21) 

(7.22) 

L L 

(L-1) q j ( X )  2[ 2 q;(X)I2  = [ 1 - q ; ( X ) I 2  = r .*2(X)  . (7.23) 
; = 1  j =  I 
j ti j t; 

Adding (L - l )q2  (X) to both sides, 
L 

/ = I  
( L - l ) x q ; ( x )  >I-"*(X)  + ( L - l ) [ I - , . * ( x ) p  

Substituting (7.24) into (7.21) [I] ,  

(7.24) 




