Practical Issues in Machine Learning
Overfitting and Model selection

Aarti Singh

Machine Learning 10-701/15-781
Feb 3, 2010
True vs. Empirical Risk

True Risk: Target performance measure

- **Classification** – Probability of misclassification $P(f(X) ≠ Y)$
- **Regression** – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Also known as “Generalization Error” – performance on a random test point (X,Y)
True vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification \(P(f(X) \neq Y) \)

Regression – Mean Squared Error \(\mathbb{E}[(f(X) - Y)^2] \)

Also known as “Generalization Error” – performance on a random test point (X,Y)

Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples \(\frac{1}{n} \sum_{i=1}^{n} 1_{f(X_i) \neq Y_i} \)

Regression – Average Squared Error \(\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2 \)
Overfitting

Is the following predictor a good one?

\[f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \ldots, n \\ \text{any value,} & \text{otherwise} \end{cases} \]

What is its empirical risk? (performance on training data)

zero!

What about true risk?

\(> \) zero

Will predict very poorly on new random test point, \textit{Large generalization error}!
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (0-NN classifier, decision tree with one sample/leaf)

Football player?
- Yes
- No
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to $k-1$)

```
code online
```
If we allow very complicated predictors, we could overfit the training data.

Empirical risk is no longer a good indicator of true risk.
Behavior of True Risk

Want predictor based on training data \hat{f}_n to be as good as optimal predictor f^*

Excess Risk

$$E[R(\hat{f}_n)] - R^*$$

wrt the distribution of training data

- Why is the risk of \hat{f}_n a random quantity?

$$R(\hat{f}_n) = P_{XY}(\hat{f}_n(X) \neq Y)$$

$$R(\hat{f}_n) = \mathbb{E}_{XY}[(\hat{f}_n(X) - Y)^2]$$

\hat{f}_n depends on random training dataset
Behavior of True Risk

Want predictor based on training data \hat{f}_n to be as good as optimal predictor f^*

Excess Risk

$$E \left[R(\hat{f}_n) \right] - R^* = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R^* \right)$$

Due to randomness of training data

Due to restriction of model class

Finite sample size + noise
Behavior of True Risk

\[
E \left[R(\hat{f}_n) \right] - R^* = \underbrace{\left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^* \right)}_{\text{approximation error}}
\]

Complexity of \mathcal{F}
Bias – Variance Tradeoff

Regression: \[Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \]

\[R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \]

\[\mathbb{E}_D[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - Y)^2] \]

\[= \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - \mathbb{E}_D[\hat{f}_n(X)] + \mathbb{E}_D[\hat{f}_n(X)] - Y)^2] \]

\[= \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - \mathbb{E}_D[\hat{f}_n(X)])^2 + (\mathbb{E}_D[\hat{f}_n(X)] - Y)^2 \]

\[+ 2(\hat{f}_n(X) - \mathbb{E}_D[\hat{f}_n(X)])(\mathbb{E}_D[\hat{f}_n(X)] - Y) \]

\[= \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - \mathbb{E}_D[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D}[(\mathbb{E}_D[\hat{f}_n(X)] - Y)^2] \]

\[+ \mathbb{E}_{X,Y} 2(\mathbb{E}_D[\hat{f}_n(X)] - \mathbb{E}_D[f_n(X)])(\mathbb{E}_D[\hat{f}_n(X)] - Y) \]

Notice: Optimal predictor does not have zero error
Bias – Variance Tradeoff

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

Notice: Optimal predictor does not have zero error

\[R^* = \mathbb{E}_{X,Y}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \]

\[\mathbb{E}_D[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - Y)^2] \]

\[= \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - \mathbb{E}_D[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D}[(\mathbb{E}_D[\hat{f}_n(X)] - Y)^2] \]

variance - how much does the predictor vary about its mean for different training data points

Now, let's look at the second term:

\[\mathbb{E}_{X,Y,D}[(\mathbb{E}_D[\hat{f}_n(X)] - Y)^2] = \mathbb{E}_{X,Y}[(\mathbb{E}_D[\hat{f}_n(X)] - Y)^2] \]

Note: this term doesn’t depend on D
Bias – Variance Tradeoff

\[\mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\hat{f}_n(X)] - Y)^2 \right] = \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\hat{f}_n(X)] - f^*(X) - \epsilon)^2 \right] \\
= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\hat{f}_n(X)] - f^*(X))^2 + \epsilon^2 \\
- 2\epsilon (\mathbb{E}_D[\hat{f}_n(X)] - f^*(X)) \right] \\
= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \\
- 2\mathbb{E}_{X,Y} \left[\epsilon (\mathbb{E}_D[\hat{f}_n(X)] - f^*(X)) \right] \\
0 \text{ since noise is independent and zero mean} \\
= \mathbb{E}_{X,Y} \left[(\mathbb{E}_D[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \\
\text{bias}^2 - \text{how much does the predictor on average differ from the optimal predictor} \\
\text{noise variance}
Bias – Variance Tradeoff

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R^* = \mathbb{E}_{X,Y}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2
\]

\[
\mathbb{E}_D[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D}[(\hat{f}_n(X) - Y)^2]
\]
\[
= \mathbb{E}[(\hat{f}_n(X) - \mathbb{E}[\hat{f}_n(X)])^2] + \mathbb{E}[(\mathbb{E}[\hat{f}_n(X)] - f^*(X))^2] + \sigma^2
\]

Excess Risk = \(\mathbb{E}_D[R(\hat{f}_n)] - R^* \) = variance + bias^2

Random component ≡ est err ≡ approx err

Notice: Optimal predictor does not have zero error
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but instable
Examples of Model Spaces

Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with varying neighborhood sizes $k = 1, 2, 3, \ldots$
 Small neighborhood => Higher complexity

• Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves => Higher complexity

• Regression with polynomials of order $k = 0, 1, 2, \ldots$
 Higher degree => Higher complexity

• Kernel Regression with bandwidth h
 Small bandwidth => Higher complexity

How can we select the right complexity model?
Model Selection

Setup:

Model Classes \(\{ \mathcal{F}_\lambda \}_{\lambda \in \Lambda} \) of increasing complexity \(\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots \)

\[
\min_{\lambda} \min_{f \in \mathcal{F}_\lambda} J(f, \lambda)
\]

We can select the right complexity model in a data-driven/adaptive way:

- Cross-validation
- Method of Sieves
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria - Minimum Description Length, AIC, BIC
Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold-out procedure:

1. Split into two sets:
 - Training dataset: \(D_T = \{ X_i, Y_i \}_{i=1}^m \)
 - Validation dataset: \(D_V = \{ X_i, Y_i \}_{i=m+1}^n \)

2. Use \(D_T \) for training a predictor from each model class:

\[
\hat{f}_\lambda = \arg \min_{f \in F_\lambda} \hat{R}_T(f)
\]

Evaluated on training dataset \(D_T \)
Hold-out method

3) Use D_v to select the model class which has smallest empirical error on D_v

$$\hat{\lambda} = \arg\min_{\lambda \in \Lambda} \hat{R}_V(\hat{f}_\lambda)$$

Evaluated on validation dataset D_v

4) Hold-out predictor

$$\hat{f} = \hat{f}_{\hat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is “stable”
Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling methods at the expense of more computation.
Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.
Final predictor is average/majority vote over the K hold-out estimates.

![Diagram showing K-fold cross-validation]

- Run 1
 - Training
 - Validation
 \[\Rightarrow \hat{f}_1 \]

- Run 2
 - Training
 - Validation
 \[\Rightarrow \hat{f}_2 \]

- Run K
 - Training
 - Validation
 \[\Rightarrow \hat{f}_K \]
Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run for n runs

![Diagram showing LOO cross-validation]

- Run 1: Training $\Rightarrow \hat{f}_1$
- Run 2: Training $\Rightarrow \hat{f}_2$
- Run K: Training $\Rightarrow \hat{f}_K$
Cross-validation

Random subsampling

Randomly subsample a fixed fraction αn ($0 < \alpha < 1$) of the dataset for validation.
Form hold-out predictor with remaining data as training data.
Repeat K times
Final predictor is average/majority vote over the K hold-out estimates.

```
Run 1  Run 2  Run K
\[ \Rightarrow \hat{f}_1 \]
\[ \Rightarrow \hat{f}_2 \]
\[ \Rightarrow \hat{f}_K \]
```

```
- | \[ \text{training} \] | \[ \text{validation} \] 
```

Total number of examples
Estimating generalization error

Generalization error \(E_D[R(\hat{f}_n)] \)

Hold-out \(\equiv \) 1-fold:
Error estimate = \(\hat{R}_V(\hat{f}_T) \)

K-fold/LOO/random sub-sampling:
Error estimate = \(\frac{1}{K} \sum_{k=1}^{K} \hat{R}_{V_k}(\hat{f}_{T_k}) \)

We want to estimate the error of a predictor based on \(n \) data points.

If \(K \) is large (close to \(n \)), bias of error estimate is small since each training set has close to \(n \) data points.

However, variance of error estimate is high since each validation set has fewer data points and \(\hat{R}_{V_k} \) might deviate a lot from the mean.

- training
- validation

Run 1
\(\Rightarrow \hat{f}_1 \)

Run 2
\(\Rightarrow \hat{f}_2 \)

Run K
\(\Rightarrow \hat{f}_K \)
Practical Issues in Cross-validation

How to decide the values for K and α?

- **Large K**
 + The bias of the error estimate will be small
 - The variance of the error estimate will be large
 - The computational time will be very large as well (many experiments)

- **Small K**
 + The number of experiments and, therefore, computation time are reduced
 + The variance of the error estimate will be small
 - The bias of the error estimate will be large

In practice, the choice of the number of folds depends on the size of the dataset:

For large datasets, even 3-Fold Cross Validation will be quite accurate
For very sparse datasets, we may have to use leave-one-out in order to train on as many examples as possible

- A common choice is $K=10$ and $\alpha = 0.1$
Occam’s Razor

William of Ockham (1285-1349) *Principle of Parsimony:*

“One should not increase, beyond what is necessary, the number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)
Importance of Domain knowledge

Distribution of photon arrivals

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Oil Spill Contamination
Method of Sieves

Consider a sequence of models whose complexity grows with # training data, \(n \)

\[
\mathcal{F}_1 < \mathcal{F}_2 < \ldots \mathcal{F}_n < \ldots
\]

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}_n} \hat{R}_n(f)
\]

Why does optimal complexity depend on # training data?

Consider kernel regression in \(d \)-dimensions: complexity \(\equiv \) bandwidth \(h \)

Large \(h \) – average more data points, reduce noise

Lower variance \(\propto \frac{1}{nh^d} = \# \) pts in h-ball

Small \(h \) – less smoothing, more accurate fit

Lower bias \(\propto h^\alpha \rightarrow \) Smoothness of target function
Consider a sequence of models whose complexity grows with \(\# \) training data, \(n \)

\[\mathcal{F}_1 < \mathcal{F}_2 < \ldots \mathcal{F}_n < \ldots \]

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}_n} \hat{R}_n(f) \]

Why does optimal complexity depend on \(\# \) training data?

Consider kernel regression in \(d \)-dimensions: complexity \(\equiv \) bandwidth \(h \)

Bias-variance tradeoff:

\[\text{Bias}^2 + \text{Variance} \propto h^{2\alpha} + \frac{1}{nh^d} \]

If smoothness \(\alpha \) is known, we can choose bandwidth \(h \) as:

\[h \asymp n^{-\frac{2\alpha}{2\alpha + d}} \]

How to choose scaling constant? **Cross-validation**
Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

With high probability, \[|R(f) - \hat{R}_n(f)| \leq C(f) \quad \forall f \in \mathcal{F} \]

Bound on deviation from true risk

Concentration bounds (later)

High prob Upper bound on true risk

C(f) - large for complex models
Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

With high probability,

\[|R(f) - \hat{R}_n(f)| \leq C(f) \quad \forall f \in \mathcal{F} \]

Concentration bounds (later)

\[R(\hat{f}_n) \leq \hat{R}_n(\hat{f}_n) + C(\hat{f}_n) = \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

\[\leq \min_{f \in \mathcal{F}} \{ R(f) + 2C(f) \} \]

\[R(\hat{f}_n) - R^* \leq \min_{f \in \mathcal{F}} \{ R(f) - R^* + 2C(f) \} \]

approx err est err
Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

How does structural risk minimization help in kernel regression?

Let \(C(f) \propto \frac{1}{nh^d} \) \quad \forall f \in \mathcal{F}_h \)

With high prob. \(R(\hat{f}_n) - R^* \leq \min_{f \in \mathcal{F}} \{ R(f) - R^* + 2C(f) \} \)

\[\leq \min_{h} \min_{f \in \mathcal{F}_h} \{ R(f) - R^* + 2C(f) \} \]

\[\propto \min_{h} \left\{ h^{2\alpha} + \frac{1}{nh^d} \right\} \]

Error automatically corresponds to best \(h \)
Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\} \]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

- Noiseless image
- Noisy image
- True Flood plain (elevation level > x)
Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\} \]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

- **True Flood plain** (elevation level > x)
- **Zero penalty**
- **CV penalty**
- **Theoretical penalty**
Complexity Regularization

Penalize complex models using \textbf{prior knowledge}.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

Bayesian viewpoint:

prior probability of \(f \) \(\equiv e^{-C(f)} \)

cost is small if \(f \) is highly probable, cost is large if \(f \) is improbable

ERM (empirical risk minimization) over a restricted class \(\mathcal{F} \), e.g. linear classifiers,
\(\equiv \) uniform prior on \(f \in \mathcal{F} \), zero probability for other predictors

\[
\hat{f}^L_n = \arg \min_{f \in \mathcal{F}_L} \hat{R}_n(f)
\]
Penalize complex models using **prior knowledge**.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

Cost of model (log prior)

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} \log p(D|\theta) + \log p(\theta)
\]

\[
\hat{\beta}_{MAP} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i\beta)^2 + \lambda \|eta\|
\]

Penalize models based on some norm of regression coefficients

How to choose tuning parameter \(\lambda \)? **Cross-validation**
Information Criteria

Penalize complex models based on their information content.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

MDL (Minimum Description Length)

Example: Binary Decision trees

\[\mathcal{F}^T = \bigcup_{k \geq 1} \mathcal{F}^T_k \]

prefix encode each element \(f \) of \(\mathcal{F}^T \)

\[C(f) = 3k - 1 \text{ bits} \]

\(k \) leaves \(\Rightarrow \) \(2k - 1 \) nodes

\(2k - 1 \) bits to encode tree structure

+ \(k \) bits to encode label of each leaf (0/1)

5 leaves \(\Rightarrow \) 9 bits to encode structure
Information Criteria

Penalize complex models based on their information content.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

MDL (Minimum Description Length)

Other Information Criteria:

AIC (Akaike IC) \(C(f) = \# \text{ parameters} \)

Allows \# parameters to be infinite as \# training data \(n \) become large

BIC (Bayesian IC) \(C(f) = \# \text{ parameters} \times \log n \)

Penalizes complex models more heavily – limits complexity of models as \# training data \(n \) become large
Summary

True and Empirical Risk

Over-fitting

Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection

- Hold-out, K-fold cross-validation
- Method of Sieves
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria – MDL, AIC, BIC