Semi-Supervised Learning

Aarti Singh

Machine Learning 10-701/15-781
April 19, 2010

Slides Courtesy: Jerry Zhu
HW, Exam & Project

- HW 5: out today, due April 26 (Monday) @ beginning of class
- Project Poster Session: May 4 (Tuesday), 3-6 pm, NSH Atrium
- Project Report: May 5 (Wednesday) @ midnight by email
- Exam: May 7 (Friday), 5:30-8:30 pm, DH 2302
Supervised Learning

Feature Space \(\mathcal{X} \) \hspace{2cm} **Label Space** \(\mathcal{Y} \)

Goal: Construct a predictor \(f : \mathcal{X} \rightarrow \mathcal{Y} \) to minimize

\[
R(f) \equiv \mathbb{E}_{XY} \left[\text{loss}(Y, f(X)) \right]
\]

Optimal predictor (Bayes Rule) depends on unknown \(P_{XY} \), so instead learn a good prediction rule from training data \(\{(X_i, Y_i)\}_{i=1}^{n} \sim P_{XY} \) (unknown)

Training data \(\{(X_i, Y_i)\}_{i=1}^{n} \) \hspace{2cm} Learning algorithm \hspace{2cm} Prediction rule \(\widehat{f}_n \)
Labeled and Unlabeled data

Unlabeled data, X_i

Cheap and abundant!

Human expert/
Special equipment/
Experiment

Labeled data, Y_i

Expensive and scarce!

“Crystal” “Needle” “Empty”

“0” “1” “2” …

“Sports” “News” “Science” …
Example: Hard to obtain labels

Task: speech analysis
- Switchboard dataset
- telephone conversation transcription
- 400 hours annotation time for each hour of speech

film ⇒ f ih n uh gl n m
be all ⇒ bcl b iy iy_tr ao_tr ao l dl
Example: Hard to obtain labels

Task: natural language parsing
- Penn Chinese Treebank
- 2 years for 4000 sentences

“nThe National Track and Field Championship has finished.”
Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Word rejected by OCR
(Optical Character Recognition)

You provide a free label!
Semi-Supervised learning

Training data $\{(X_i, Y_i)\}_{i=1}^{n}$

$\{X_i\}_{i=1}^{m}$

Learning algorithm

Prediction rule $\hat{f}_{n,m}$

Supervised learning (SL)

Labeled data $\{X_i, Y_i\}_{i=1}^{n}$

Semi-Supervised learning (SSL)

Labeled data $\{X_i, Y_i\}_{i=1}^{n}$ and Unlabeled data $\{X_i\}_{i=1}^{m}$

$m \gg n$

Goal: Learn a better prediction rule than based on labeled data alone.
Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled data.

- concept learning in children: \(x=\text{animal}, \ y=\text{concept (e.g., dog)}\)
- Daddy points to a brown animal and says “dog!”
- Children also observe animals by themselves
Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.
Can unlabeled data help?

“Similar” data points have “similar” labels
Self-training

Our first SSL algorithm:

Input: labeled data $\{(x_i, y_i)\}_{i=1}^l$, unlabeled data $\{x_j\}_{j=l+1}^{l+u}$.
1. Initially, let $L = \{(x_i, y_i)\}_{i=1}^l$ and $U = \{x_j\}_{j=l+1}^{l+u}$.
2. Repeat:
3. Train f from L using supervised learning.
4. Apply f to the unlabeled instances in U.
5. Remove a subset S from U; add $\{(x, f(x))|x \in S\}$ to L.

Self-training is a \textit{wrapper} method

- the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself
Self-training Example

Propagating 1-NN

Input: labeled data \(\{(x_i, y_i)\}_{i=1}^{l} \), unlabeled data \(\{x_j\}_{j=l+1}^{l+u} \), distance function \(d() \).

1. Initially, let \(L = \{(x_i, y_i)\}_{i=1}^{l} \) and \(U = \{x_j\}_{j=l+1}^{l+u} \).

2. Repeat until \(U \) is empty:

3. Select \(x = \arg\min_{x \in U} \min_{x' \in L} d(x, x') \).

4. Set \(f(x) \) to the label of \(x \)'s nearest instance in \(L \).
 Break ties randomly.

5. Remove \(x \) from \(U \); add \((x, f(x)) \) to \(L \).
Propagating 1-Nearest-Neighbor: now it works

(a) Iteration 1

(b) Iteration 25

(c) Iteration 74

(d) Final labeling of all instances
Propagating 1-Nearest-Neighbor: now it doesn’t

But with a single outlier...

![Graphs showing the effect of propagating 1-Nearest-Neighbor with and without an outlier.](image)
Some SSL Algorithms

- Generative methods – assume a model for $p(x,y)$ and maximize joint likelihood

 Mixture models

- Multi-view methods – multiple independent learners that agree on prediction for unlabeled data

 Co-training

- Graph-based methods – assume the target function $p(y|x)$ is smooth wrt a graph or manifold

 Graph/Manifold Regularization
Some SSL Algorithms

- Generative methods – assume a model for \(p(x,y) \) and maximize joint likelihood
 - Mixture models

- Multi-view methods – multiple independent learners that agree on prediction for unlabeled data
 - Co-training

- Graph-based methods – assume the target function \(p(y|x) \) is smooth wrt a graph or manifold
 - Graph/Manifold Regularization
Mixture Models

Labeled data \((X_l, Y_l)\):

Assuming each class has a Gaussian distribution, what is the decision boundary?
Mixture Models

Model parameters: \(\theta = \{ w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2 \} \)

The GMM:

\[
p(x, y | \theta) = p(y | \theta)p(x | y, \theta) = w_y N(x; \mu_y, \Sigma_y)
\]

Classification: \(p(y | x, \theta) = \frac{p(x, y | \theta)}{\sum_{y'} p(x, y' | \theta)} \geq 1/2 \)
Mixture Models

The most likely model, and its decision boundary:
Mixture Models

Adding unlabeled data:
Mixture Models

With unlabeled data, the most likely model and its decision boundary:
Mixture Models

They are different because they maximize different quantities.

\[p(X_l, Y_l | \theta) \]

\[p(X_l, Y_l, X_u | \theta) \]
Mixture Models

Assumption

knowledge of the model form \(p(X, Y | \theta) \).

- joint and marginal likelihood

\[
p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)
\]

- find the maximum likelihood estimate (MLE) of \(\theta \), the maximum a posteriori (MAP) estimate, or be Bayesian

- common mixture models used in semi-supervised learning:
 - Mixture of Gaussian distributions (GMM) – image classification
 - Mixture of multinomial distributions (Naïve Bayes) – text categorization
 - Hidden Markov Models (HMM) – speech recognition

- Learning via the Expectation-Maximization (EM) algorithm (Baum-Welch)
Gaussian Mixture Models

Binary classification with GMM using MLE.

- with only labeled data
 \[\log p(X_l, Y_l | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta)p(x_i | y_i, \theta) \]
 - MLE for \(\theta \) trivial (sample mean and covariance)

- with both labeled and unlabeled data
 \[\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta)p(x_i | y_i, \theta) \]
 + \[\sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta)p(x_i | y, \theta) \right) \]
 - MLE harder (hidden variables): EM
EM for Gaussian Mixture Models

1. Start from MLE $\theta = \{ w, \mu, \Sigma \}_{1:2}$ on (X_l, Y_l),
 - $w_c =$ proportion of class c
 - $\mu_c =$ sample mean of class c
 - $\Sigma_c =$ sample cov of class c

 repeat:

2. The E-step: compute the expected label $p(y|x, \theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all $x \in X_u$
 - label $p(y = 1|x, \theta)$-fraction of x with class 1
 - label $p(y = 2|x, \theta)$-fraction of x with class 2

3. The M-step: update MLE θ with (now labeled) X_u
Assumption for GMMs

- **Assumption**: the data actually comes from the mixture model, where the number of components, prior $p(y)$, and conditional $p(x|y)$ are all correct.

- **When the assumption is wrong:**

![Scatter plot](image)
Assumption for GMMs

- Wrong model, higher log likelihood (-847.9309)
- Correct model, lower log likelihood (-921.143)
Assumption for GMMs

Heuristics to lessen the danger
- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data \((\lambda < 1)\)

\[
\log p(X_l, Y_l, X_u|\theta) = \sum_{i=1}^{l} \log p(y_i|\theta)p(x_i|y_i, \theta) \\
+ \lambda \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y|\theta)p(x_i|y, \theta) \right)
\]

Other issues: Identifiability, EM local optima
Related: Cluster and Label

Input: \((x_1, y_1), \ldots, (x_l, y_l), x_{l+1}, \ldots, x_{l+u}\), a clustering algorithm \(A\), a supervised learning algorithm \(L\)

1. Cluster \(x_1, \ldots, x_{l+u}\) using \(A\).
2. For each cluster, let \(S\) be the labeled instances in it:
3. Learn a supervised predictor from \(S\): \(f_S = L(S)\).
4. Apply \(f_S\) to all unlabeled instances in this cluster.

Output: labels on unlabeled data \(y_{l+1}, \ldots, y_{l+u}\).

But again: SSL sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.
Cluster-and-label: now it works, now it doesn’t

Example: $A =$ Hierarchical Clustering, $L =$ majority vote.
Some SSL Algorithms

- Generative methods – assume a model for $p(x,y)$ and maximize joint likelihood
 - Mixture models

- Multi-view methods – multiple independent learners that agree on prediction for unlabeled data
 - Co-training

- Graph-based methods – assume the target function $p(y|x)$ is smooth wrt a graph or manifold
 - Graph/Manifold Regularization
Two views of an Instance

Example: named entity classification Person (Mr. Washington) or Location (Washington State)

instance 1: ... headquartered in (Washington State) ...
instance 2: ... (Mr. Washington), the vice president of ...

- a named entity has two views (subset of features) $x = [x^{(1)}, x^{(2)}]$
- the words of the entity is $x^{(1)}$
- the context is $x^{(2)}$
Two views of an Instance

instance 1: ... headquartered in (Washington State)L ...
instance 2: ... (Mr. Washington)P, the vice president of ...

\texttt{test:} ... (Robert Jordan), a \underline{partner} at ...
\texttt{test:} ... \underline{flew to} (China) ...
Two views of an Instance

With more unlabeled data

instance 1: ... \underline{headquartered in} (Washington State)\(^L\) ...
instance 2: ... (Mr. Washington)\(^P\), the \underline{vice president} of ...
instance 3: ... \underline{headquartered in} (Kazakhstan) ...
instance 4: ... \underline{flew to} (Kazakhstan) ...
instance 5: ... (Mr. Smith), a \underline{partner} at Steptoe & Johnson ...

test: ... (Robert Jordan), a \underline{partner} at ...

test: ... \underline{flew to} (China) ...
Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(x_i, y_i)\}_{i=1}^l$, unlabeled data $\{x_j\}_{j=l+1}^{l+u}$

- each instance has two views $x_i = [x_i^{(1)}, x_i^{(2)}]$, and a learning speed k.

1. let $L_1 = L_2 = \{(x_1, y_1), \ldots, (x_l, y_l)\}$.
2. Repeat until unlabeled data is used up:
3. Train view-1 $f^{(1)}$ from L_1, view-2 $f^{(2)}$ from L_2.
4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.
5. Add $f^{(1)}$'s top k most-confident predictions $(x, f^{(1)}(x))$ to L_2.
 Add $f^{(2)}$'s top k most-confident predictions $(x, f^{(2)}(x))$ to L_1.
 Remove these from the unlabeled data.

Like self-training, but with two classifiers teaching each other.
Co-training

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier
- $x^{(1)}$ and $x^{(2)}$ are conditionally independent given the class
Multi-view learning

Extends co-training.

- **Loss Function:** $c(x, y, f(x)) \in [0, \infty)$. For example,
 - squared loss $c(x, y, f(x)) = (y - f(x))^2$
 - 0/1 loss $c(x, y, f(x)) = 1$ if $y \neq f(x)$, and 0 otherwise.

- **Empirical risk:** $\hat{R}(f) = \frac{1}{l} \sum_{i=1}^{l} c(x_i, y_i, f(x_i))$

- **Regularizer:** $\Omega(f)$, e.g., $\|f\|^2$

- **Regularized Risk Minimization:** $f^* = \arg\min_{f \in \mathcal{F}} \hat{R}(f) + \lambda \Omega(f)$
Multi-view learning

A special regularizer $\Omega(f)$ defined on unlabeled data, to encourage agreement among multiple learners:

$$\arg\min_{f_1,...,f_k} \sum_{v=1}^{k} \left(\sum_{i=1}^{l} c(x_i, y_i, f_v(x_i)) + \lambda_1 \Omega_{SL}(f_v) \right)$$

$$+ \lambda_2 \sum_{u,v=1}^{k} \sum_{i=l+1}^{l+u} c(x_i, f_u(x_i), f_v(x_i))$$

Each of the k learners is good

The k learners agree on unlabeled data
Some SSL Algorithms

- Generative methods – assume a model for $p(x,y)$ and maximize joint likelihood
 - Mixture models

- Multi-view methods – multiple independent learners that agree on prediction for unlabeled data
 - Co-training

- Graph-based methods – assume the target function $p(y|x)$ is smooth wrt a graph or manifold
 - Graph/Manifold Regularization
Graph Regularization

Assumption: Similar unlabeled data have similar labels.

Handwritten digits recognition with pixel-wise Euclidean distance

<table>
<thead>
<tr>
<th>2</th>
<th>‘indirectly’ similar with stepping stones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>not similar</td>
</tr>
</tbody>
</table>
Graph Regularization

Similarity Graphs: Model local neighborhood relations between data points

- Nodes: $X_l \cup X_u$

- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph
 - fully connected graph, weight decays with distance
 \[
 w_{ij} = \exp \left(-\| x_i - x_j \|^2 / \sigma^2 \right)
 \]
 - ϵ-radius graph
Graph Regularization

Graph Prior: \[p(f) \propto e^{-\sum_{i,j} w_{ij}(f_i-f_j)^2} \]

If data points \(i \) and \(j \) are similar (i.e. weight \(w_{ij} \) is large), then their labels are similar \(f_i = f_j \)

\[
\min_f \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l, u} w_{ij}(f_i - f_j)^2
\]

- Loss on labeled data (mean square, 0-1)
- Graph based smoothness prior on labeled and unlabeled data
Graph Regularization

\[
\min_f \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2
\]

Loss on labeled data Graph based smoothness prior
on labeled and unlabeled data

From previous lecture, recall the second term is simply the min-cut objective.
If binary label, can be solved by min-cut on a modified graph - add source and sink nodes with large weight to labeled examples.

Blum & Chawla’01
Semi-Supervised Learning

- Generative methods – Mixture models
- Multi-view methods – Co-training
- Graph-based methods – Manifold Regularization
- Semi-Supervised SVMs – assume unlabeled data from different classes have large margin
- Many other methods

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions