What is a good Decision Boundary?

- Consider a binary classification task with \(y = \pm 1 \) labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly.
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...
- Are all decision boundaries equally good?
What is a good Decision Boundary?

Not All Decision Boundaries Are Equal!

- Why we may have such boundaries?
 - Irregular distribution
 - Imbalanced training sizes
 - Outliners
Classification and Margin

- Parameterizing decision boundary
 - Let \(\mathbf{w} \) denote a vector orthogonal to the decision boundary, and \(b \) denote a scalar "offset" term, then we can write the decision boundary as:
 \[
 \mathbf{w}^T x + b = 0
 \]

The margin between any two points \(m = d^- + d^+ \)
Maximum Margin Classification

- The "minimum" permissible margin is:
 \[m = \frac{w^T(x_i - x_i^*)}{\|w\|} = 2c \]

- Here is our Maximum Margin Classification problem:

\[
\begin{align*}
\max_w & \quad \frac{2c}{\|w\|} \\
\text{s.t} & \quad y_i(w^T x_i + b) \geq c, \quad \forall i
\end{align*}
\]

Maximum Margin Classification, con'd.

- The optimization problem:

\[
\begin{align*}
\max_{w,b} & \quad \frac{c}{\|w\|} \\
\text{s.t} & \quad y_i(w^T x_i + b) \geq c, \quad \forall i
\end{align*}
\]

- But note that the magnitude of \(c \) merely scales \(w \) and \(b \), and does not change the classification boundary at all! (why?)

- So we instead work on this cleaner problem:

\[
\begin{align*}
\max_{w,b} & \quad \frac{1}{\|w\|} \\
\text{s.t} & \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
\end{align*}
\]

- The solution to this leads to the famous Support Vector Machines -- believed by many to be the best "off-the-shelf" supervised learning algorithm
Support vector machine

- A convex quadratic programming problem with linear constrains:

\[
\begin{align*}
\max_{w,b} & \quad \frac{1}{2} w^Tw \\
\text{s.t.} & \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
\end{align*}
\]

- The attained margin is now given by \(\frac{1}{\|w\|} \)
- Only a few of the classification constraints are relevant \(\Rightarrow \) support vectors

- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
 \(\Rightarrow \) deeper insight: support vectors, kernels …
 \(\Rightarrow \) more efficient algorithm

Digression to Lagrangian Duality

- The Primal Problem

\[
\begin{align*}
\min_w & \quad f(w) \\
\text{s.t.} & \quad g_i(w) \leq 0, \quad i = 1,\ldots,k \\
& \quad h_i(w) = 0, \quad i = 1,\ldots,l
\end{align*}
\]

The generalized Lagrangian:

\[
\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^k \alpha_i g_i(w) + \sum_{i=1}^l \beta_i h_i(w)
\]

the \(\alpha \)'s (\(\alpha \geq 0 \)) and \(\beta \)'s are called the Lagrangian multipliers

Lemma:

\[
\max_{w,\alpha,\beta \geq 0} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}
\]

A re-written Primal:

\[
\min_w \max_{\alpha,\beta \geq 0} \mathcal{L}(w,\alpha,\beta)
\]
Lagrangian Duality, cont.

- Recall the Primal Problem:
 \[\min_w \max_{\alpha, \beta, \alpha, \beta \geq 0} L(w, \alpha, \beta) \]

- The Dual Problem:
 \[\max_{\alpha, \beta, \alpha, \beta \geq 0} \min_w L(w, \alpha, \beta) \]

- Theorem (weak duality):
 \[d^* = \max_{\alpha, \beta, \alpha, \beta \geq 0} \min_w L(w, \alpha, \beta) \leq \min_w \max_{\alpha, \beta, \alpha, \beta \geq 0} L(w, \alpha, \beta) = p^* \]

- Theorem (strong duality):
 If there exist a saddle point of \(L(w, \alpha, \beta) \), we have
 \[d^* = p^* \]

A sketch of strong and weak duality

- Now, ignoring \(h(x) \) for simplicity, let’s look at what’s happening graphically in the duality theorems.
 \[d^* = \max_{\alpha, \beta \geq 0} \min_w f(w) + \alpha^T g(w) \leq \min_w \max_{\alpha, \beta \geq 0} f(w) + \alpha^T g(w) = p^* \]

\[f(w) \]
\[g(w) \]
A sketch of strong and weak duality

- Now, ignoring \(h(x) \) for simplicity, let's look at what's happening graphically in the duality theorems.

\[
d^* = \max_{\alpha_i \geq 0} \min_w f(w) + \alpha^T g(w) \leq \min_w \max_{\alpha_i \geq 0} f(w) + \alpha^T g(w) = p^*
\]
The KKT conditions

- If there exists some saddle point of L, then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

\[
\frac{\partial}{\partial w_i} L(w, \alpha, \beta) = 0, \quad i = 1, \ldots, k
\]

\[
\frac{\partial}{\partial \beta_i} L(w, \alpha, \beta) = 0, \quad i = 1, \ldots, l
\]

\[
\alpha_i g_i(w) = 0, \quad i = 1, \ldots, m \quad \text{Complementary slackness}
\]

\[
g_i(w) \leq 0, \quad i = 1, \ldots, m \quad \text{Primal feasibility}
\]

\[
\alpha_i \geq 0, \quad i = 1, \ldots, m \quad \text{Dual feasibility}
\]

- Theorem: If w^*, α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

- Recall our opt problem:

\[
\max_{w,b} \quad \frac{1}{2} \|w\|^2 \\
\text{s.t.} \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
\]

- This is equivalent to

\[
\min_{w,b} \quad \frac{1}{2} w^T w \\
\text{s.t.} \quad 1 - y_i(w^T x_i + b) \leq 0, \quad \forall i \quad (*)
\]

- Write the Lagrangian:

\[
L(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{m} \alpha_i [y_i(w^T x_i + b) - 1]
\]

- Recall that (*) can be reformulated as $\min_{w,b} \\max_{\alpha \geq 0} L(w, b, \alpha)$
Now we solve its dual problem: $\max_{\alpha \geq 0} \min_{w,b} L(w, b, \alpha)$
The Dual Problem

\[\max_{\alpha_i \geq 0} \min_{w, b} \mathcal{L}(w, b, \alpha) \]

- We minimize \(\mathcal{L} \) with respect to \(w \) and \(b \) first:

\[
\nabla_w \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0, \quad (*)
\]

\[
\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{m} \alpha_i y_i = 0, \quad (**)\]

Note that (*) implies:

\[
w = \sum_{i=1}^{m} \alpha_i y_i x_i \quad (***)
\]

- Plus (***) back to \(\mathcal{L} \), and using (**), we have:

\[
\mathcal{L}(w, b, \alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

The Dual problem, cont.

- Now we have the following dual opt problem:

\[
\max_{\alpha} J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

s.t. \(\alpha_i \geq 0, \quad i = 1, \ldots, k \)

\[
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- This is, (again,) a quadratic programming problem.
 - A global maximum of \(\alpha \) can always be found.
 - But what’s the big deal??
 - Note two things:
 1. \(w \) can be recovered by \(w = \sum_{i=1}^{m} \alpha_i y_i x_i \) See next …
 2. The "kernel" \(x_i^T x_j \) More later …
Support vectors

- Note the KKT condition --- only a few α_i's can be nonzero!!

$$a_i g_i(w) = 0, \quad i = 1, \ldots, m$$

![Graph showing support vectors and KKT conditions]

Call the training data points whose α_i's are nonzero the support vectors (SV)

Support vector machines

- Once we have the Lagrange multipliers $\{\alpha_i\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$w = \sum_{i \in SV} \alpha_i y_i x_i$$

- For testing with a new data z
 - Compute
 $$w^T z + b = \sum_{i \in SV} \alpha_i y_i (x_i^T z) + b$$

 and classify z as class 1 if the sum is positive, and class 2 otherwise

- Note: w need not be formed explicitly
Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier.

- To compute the weights $\{\alpha_i\}$, and to use support vector machines we need to specify only the inner products (or kernel) between the examples $x_i^T x_j$.

- We make decisions by comparing each new example z with only the support vectors:

$$y^* = \text{sign} \left(\sum_{i \in SV} \alpha_i y_i (x_i^T z) + b \right)$$

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function $w^T x + b$.

- ξ_i approximates the number of misclassified samples.
Soft Margin Hyperplane

- Now we have a slightly different opt problem:

\[
\min_{w, b} \frac{1}{2} w^T w + C \sum_{i=1}^{m} \xi_i
\]

\[
\text{s.t.} \quad y_i (w^T x_i + b) \geq 1 - \xi_i, \quad \forall i \\
\xi_i \geq 0, \quad \forall i
\]

- \(\xi_i\) are “slack variables” in optimization
- Note that \(\xi_i = 0\) if there is no error for \(x_i\)
- \(\xi_i\) is an upper bound of the number of errors
- \(C\) : tradeoff parameter between error and margin

The Optimization Problem

- The dual of this new constrained optimization problem is

\[
\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

\[
\text{s.t.} \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m \\
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound \(C\) on \(\alpha_i\) now
- Once again, a QP solver can be used to find \(\alpha_i\)
The SMO algorithm

- Consider solving the **unconstrained** opt problem:

\[
\max_{\alpha_1, \alpha_2, \ldots, \alpha_m} W(\alpha_1, \alpha_2, \ldots, \alpha_m)
\]

- We’ve already see three opt algorithms!

 - ?
 - ?
 - ?

- Coordinate ascend:

Coordinate ascend
Sequential minimal optimization

- Constrained optimization:

\[
\max_{\alpha} J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1 \atop i \neq j}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

s.t. \(0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m\)

\[\sum_{i=1}^{m} \alpha_i y_i = 0.\]

- Question: can we do coordinate along one direction at a time (i.e., hold all \(\alpha_{[i:j]}\) fixed, and update \(\alpha_i\)?)

The SMO algorithm

Repeat till convergence

1. Select some pair \(\alpha_i\) and \(\alpha_j\) to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).

2. Re-optimize \(J(\alpha)\) with respect to \(\alpha_i\) and \(\alpha_j\), while holding all the other \(\alpha_k\)'s \((k \neq i, j)\) fixed.

Will this procedure converge?
Convergence of SMO

\[
\max_\alpha J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

KKT:
\[
\begin{align*}
\text{s.t.} & \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, k \\
\sum_{i=1}^{m} \alpha_i y_i &= 0.
\end{align*}
\]

- Let’s hold \(\alpha_3, \ldots, \alpha_m\) fixed and reopt J w.r.t. \(\alpha_j\) and \(\alpha_2\)

Convergence of SMO

- The constraints:
 \[
 \alpha_1 y_1 + \alpha_2 y_2 = \xi \\
 0 \leq \alpha_1 \leq C \\
 0 \leq \alpha_2 \leq C
 \]

- The objective:
 \[
 J(\alpha_1, \alpha_2, \ldots, \alpha_m) = J((\xi - \alpha_2 y_2)y_1, \alpha_2, \ldots, \alpha_m)
 \]

- Constrained opt:
Cross-validation error of SVM

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

\[
\text{Leave-one-out CV error} = \frac{\# \text{ support vectors}}{\# \text{ of training examples}}
\]

Summary

- Max-margin decision boundary
- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The SMO algorithm