Definition (of HMM)

- Observation space
 - Alphabetic set: $C = \{c_1, c_2, \ldots, c_K\}$
 - Euclidean space: \mathbb{R}^d
- Index set of hidden states
 - $I = \{1, 2, \ldots, M\}$
- Transition probabilities between any two states
 - $p(y^i_t = 1 | y^i_{t-1} = 1) = a_{ij}$, or $p(y^i_t | y^j_{t-1} = 1) \sim \text{Multinomial}(a_{i1}, a_{i2}, \ldots, a_{iM}) \quad \forall i \in I$.
- Start probabilities
 - $p(y^i_1) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_M)$
- Emission probabilities associated with each state
 - $p(x^i_t | y^i_t = 1) \sim \text{Multinomial}(b_{i1}, b_{i2}, \ldots, b_{iK}) \quad \forall i \in I$.
 - or in general:
 - $p(x^i_t | y^i_t = 1) \sim f(\cdot | \theta_i) \quad \forall i \in I$.

Graphical model

State automata
Three Main Questions on HMMs

1. Evaluation
 GIVEN an HMM M and a sequence x.
 FIND $\text{Prob}(x \mid M)$.
 ALGO. Forward

2. Decoding
 GIVEN an HMM M and a sequence x.
 FIND the sequence y of states that maximizes, e.g., $P(y \mid x, M)$, or the most probable subsequence of states.
 ALGO. Viterbi, Forward-backward

3. Learning
 GIVEN an HMM M with unspecified transition/emission probs., and a sequence x.
 FIND parameters $\theta = (\pi, a, \eta)$ that maximize $P(x \mid \theta)$.
 ALGO. Baum-Welch (EM)

Example:

\[x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 \]

\[\alpha_i^t = \begin{cases} \pi, & \text{if } x_1 = i \\ \sum_{j=1}^{k} \alpha_j^{t-1} a_{ij} \end{cases} \]

\[\beta_t^k = \begin{cases} 1, & \text{if } x_t = k \\ \sum_{j=1}^{k} a_{jk} \beta_{t+1}^j \end{cases} \]

\[P(y_t^k = 1 \mid x) = \frac{\alpha_t^k \beta_t^k}{P(x)} \]
\[
\begin{align*}
\alpha_i^k &= P(x_i | y_i^k) = 1 \sum_i \alpha_{i+1}^i \beta_{i+1} \\
\beta_i^k &= \sum_d \beta_{d,i} P(x_{d+1} | y_{d+1}^k) = 1 \beta_{i+1} \\
\mathbb{P}(y_i^k = 1 | x) &= \frac{\alpha_i^k \beta_i^k}{\mathbb{P}(x)}
\end{align*}
\]

\[
\begin{array}{cccc}
\text{Alpha (actual)} & \text{Beta (actual)} & P(1|F) & P(1|L) \\
0.0833 & 0.0500 & 1/6 & 1/10 \\
0.0136 & 0.0052 & 1/6 & 1/10 \\
0.0022 & 0.0006 & 1/6 & 1/10 \\
0.0004 & 0.0001 & 1/6 & 1/10 \\
0.0001 & 0.0000 & 1/6 & 1/2 \\
0.0000 & 0.0000 & 1/6 & 1/2 \\
0.0000 & 0.0000 & 1/6 & 1/2 \\
0.0000 & 0.0000 & 1/6 & 1/2 \\
0.0000 & 0.0000 & 1/6 & 1/2 \\
\end{array}
\]
What is the probability of a hidden state prediction?

- A single state:
 \[P(y_t | \mathbf{X}) = \sum_{k \in \text{values of } k} \frac{\alpha_t^k \beta_t^k}{P(x)} = \frac{\text{exp}(-\gamma t) \text{exp}(\gamma t) + \text{exp}(\gamma t - \gamma t)}{\text{exp}(\gamma t - \gamma t)} \]
- What about a hidden state sequence?
 \[P(y_1, \ldots, y_T | \mathbf{X}) \]

Posterior decoding

- We can now calculate
 \[P(y_t^k = 1 | x) = \frac{P(y_t^k = 1, x)}{P(x)} = \frac{\alpha_t^k \beta_t^k}{P(x)} \]
- Then, we can ask
 - What is the most likely state at position \(t \) of sequence \(x \):
 \[k_t^* = \arg \max_k P(y_t^k = 1 | x) \]
 - Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
 - Posterior Decoding:
 \[\{ y_t^k = 1 : t = 1 \cdots T \} \]
 - This is different from MPA of a whole sequence of hidden states
 - This can be understood as bit error rate vs. word error rate

Example:
- MPA of \(\mathbf{X} \)?
- MPA of \(\mathbf{X}, \mathbf{Y} \)?
Viterbi decoding

Given \(x = x_1, \ldots, x_T \), we want to find \(y = y_1, \ldots, y_T \), such that \(P(y|x) \) is maximized:

\[
y^* = \text{argmax}_y P(y|x) = \text{argmax}_y P(y|x) = \frac{P(x|y)P(y)}{P(x)}
\]

Let

\[
V_t^k = \max_{y_1, \ldots, y_{t-1}} P(x_1, \ldots, x_t, y_1, \ldots, y_{t-1}, y_t = k) = \text{Probability of most likely sequence of states ending at state } y_t = k
\]

The recursion:

\[
V_t^k = P(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i
\]

Underflows are a significant problem

\[
p(x_1, \ldots, x_T, y_1, \ldots, y_T) = \pi_{y_1} a_{y_1,y_2} \ldots a_{y_{T-1},y_T} b_{y_T}
\]

- These numbers become extremely small – underflow
- Solution: Take the logs of all values:
 \[
 V^k_t = \log p(x_t | y_t^k = 1) + \max_i \left(\log(a_{i,k}) + V^i_{t-1} \right)
 \]

The Viterbi Algorithm – derivation

- Define the viterbi probability:
 \[
 V_{t-1}^k = \max_{y_1, \ldots, y_{t-2}} P(x_1, \ldots, x_{t-1}, y_1, \ldots, y_{t-1}, y_t^k = 1)
 \]

 \[
 = \max_{y_1, \ldots, y_{t-2}} P(x_1, x_2, y_1^k = 1 | x_1, x_2, y_1, \ldots, y_{t-1}) P(x_1, x_2, \ldots, x_{t-1}, y_1, y_{t-1})
 \]

 \[
 = \max_{y_1, \ldots, y_{t-2}} P(x_1, x_2, y_1^k = 1 | y_1) P(x_1, x_2, \ldots, x_{t-1}, y_1, y_{t-1})
 \]

 \[
 = \max_P p(x_1, x_2, y_1^k = 1 | y_1) \max_{y_1, \ldots, y_{t-2}} P(x_1, x_2, y_1^k = 1, y_1) P(x_1, x_2, \ldots, x_{t-1}, y_1, y_{t-1})
 \]

 \[
 = \max_P p(x_1, x_2, y_1^k = 1 | y_1) a_{y_1} V_{t-1}^i
 \]

 \[
 = p(x_1, x_2, y_1^k = 1) a_{y_1} V_{t-1}^i
 \]

 \[
 = p(x_1, x_2, y_1^k = 1) a_{y_1} V_{t-1}^i
 \]

\[© Eric Xing @ CMU, 2006-2010\]
The Viterbi Algorithm

- **Input:** $x = x_1, ..., x_T$

 Initialization:

 $V_1^k = P(x_1 | y_1^k = 1) \pi_k$

 Iteration:

 $V_t^k = P(x_t | y_t^k = 1) \max, a_{tk} V_{t-1}^j$

 $\text{Ptr}(k, t) = \arg \max, a_{tk} V_{t-1}^j$

 Termination:

 $P(x, y^\ast) = \max_k V_T^k$

 TraceBack:

 $y_T^\ast = \arg \max_k V_T^k$

 $y_{T-1}^\ast = \text{Ptr}(y_T^\ast, t)$

Viterbi Vs. MPA (individual)

$x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4$

$V_t^k (\log)$ $\text{Ptr}(k, t)$ Seq Viterbi MPA $p(y_t^k = 1 | x)$

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.4849</td>
<td>-2.9957</td>
<td>N/A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.8128</td>
</tr>
<tr>
<td>-4.3280</td>
<td>-5.3496</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.8238</td>
</tr>
<tr>
<td>-6.1710</td>
<td>-7.7035</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.8176</td>
</tr>
<tr>
<td>-8.0141</td>
<td>-10.0574</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0.7925</td>
</tr>
<tr>
<td>-9.8571</td>
<td>-10.8018</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0.7415</td>
</tr>
<tr>
<td>-11.7002</td>
<td>-13.1557</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.7505</td>
</tr>
<tr>
<td>-13.5432</td>
<td>-15.5096</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.7386</td>
</tr>
<tr>
<td>-15.3863</td>
<td>-16.2540</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0.7027</td>
</tr>
<tr>
<td>-17.2293</td>
<td>-18.6079</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.7251</td>
</tr>
<tr>
<td>-19.0724</td>
<td>-20.9618</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0.7251</td>
</tr>
</tbody>
</table>
Another Example

X = 6, 2, 3, 5, 6, 2, 6, 3, 6, 6

| V_t^k (log) | p||t(r^k,t) | Seq | Viterbi | MPA | p(y_t^k = 1 | x) |
|-------------|--------|--------|--------|--------|------|--------------------|
| -2.4849 | -1.3863 | N/A | 6 | 2 | 2 | 0.2733 0.7267 |
| -4.0943 | -4.1997 | 2 | 2 | 2 | 1 | 0.6090 0.3909 |
| -6.3969 | -7.0131 | 1 | 2 | 3 | 1 | 0.6538 0.3462 |
| -8.6995 | -9.6158 | 1 | 1 | 5 | 1 | 0.6062 0.3938 |
| -11.0021 | -10.3090| 1 | 1 | 6 | 2 | 0.2861 0.7139 |
| -13.0170 | -13.1224| 2 | 2 | 2 | 1 | 0.5342 0.4658 |
| -15.3196 | -14.3263| 1 | 2 | 6 | 2 | 0.2734 0.7266 |
| -17.0344 | -17.1397| 2 | 2 | 3 | 2 | 0.5226 0.4774 |
| -19.3370 | -18.3437| 1 | 2 | 6 | 2 | 0.2252 0.7748 |
| -21.0518 | -19.5477| 2 | 2 | 6 | 2 | 0.2159 0.7841 |

Same transition probabilities

Computational Complexity and Implementation Details

- What is the running time, and space required, for Forward, and Backward?

 \[
 \alpha_t^k = p(x_t \mid y_t^k = 1) \sum_{i} \alpha_{t-1}^i a_{i,k} \\
 \beta_t^k = \sum_{i} a_{k,i} p(x_{t+1} \mid y_{t+1}^i = 1) \beta_{t+1}^i \\
 V_t^k = p(x_t \mid y_t^k = 1) \max_i a_{i,k} V_{t+1}^i
 \]

 Time: \(O(K^2N) \); Space: \(O(KN) \).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant
Three Main Questions on HMMs

1. Evaluation
 GIVEN an HMM M and a sequence x.
 FIND $\text{Prob}(x|\mathcal{M})$.
 ALGO. Forward

2. Decoding
 GIVEN an HMM M and a sequence x.
 FIND the sequence y of states that maximizes, e.g., $P(y|x,M)$,
 or the most probable subsequence of states.
 ALGO. Viterbi, Forward-backward

3. Learning
 GIVEN an HMM M, with unspecified transition/emission probs.,
 and a sequence x.
 FIND parameters $\theta = (\pi, a, \eta)$ that maximize $P(x|\theta)$.
 ALGO. Baum-Welch (EM)

Learning HMM: two scenarios

- **Supervised learning**: estimation when the “right answer” is known
 - **Examples**:
 GIVEN: a genomic region $x = x_1 \ldots x_{1,000,000}$ where we have good
 (experimental) annotations of the CpG islands
 GIVEN: the casino player allows us to observe him one evening,
 as he changes dice and produces 10,000 rolls

- **Unsupervised learning**: estimation when the “right answer” is unknown
 - **Examples**:
 GIVEN: the porcupine genome; we don’t know how frequent are the
 CpG islands there, neither do we know their composition
 GIVEN: 10,000 rolls of the casino player, but we don’t see when he
 changes dice

- **QUESTION**: Update the parameters θ of the model to maximize
 $P(x|\theta)$ --- Maximal likelihood (ML) estimation
MLE

$$P(x, y) = \sum_{i=1}^{N} P(x_i, y_i)$$

$$\{x^*, A_{ij}, B_{ik}\} = \operatorname{argmax} \log P(x, y) .$$

$$y^*_t = \frac{y_t^1}{N},$$

$$x^*_t = \frac{x_t^1}{N_1} .$$

Supervised ML estimation

- Given $x = x_1 \ldots x_N$ for which the true state path $y = y_1 \ldots y_N$ is known,
- Define:
 $$A_{ij} = \text{# times state transition } i \rightarrow j \text{ occurs in } y$$
 $$B_{ik} = \text{# times state } i \text{ in } y \text{ emits } k \text{ in } x$$
- We can show that the maximum likelihood parameters θ are:
 $$a_{ij}^{\text{ML}} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_t \sum_{t-1} x_{t-1,i} y_{t,j}}{\sum_t \sum_{t-1} x_{t-1,i}} = \frac{A_{ij}}{\sum_j A_{ij}},$$
 $$b_{ik}^{\text{ML}} = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_t \sum_{t-1} x_{t-1,i} y_{t,k}}{\sum_t \sum_{t-1} y_{t,k}} = \frac{B_{ik}}{\sum_k B_{ik}} .$$
- What if y is continuous? We can treat $$\left(x_{t,i}, y_{t,i}\right)_{t=1:T, i=1:N}$$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
Supervised ML estimation, ctd.

- **Intuition:**
 - When we know the underlying states, the best estimate of \(\theta \) is the average frequency of transitions & emissions that occur in the training data.

- **Drawback:**
 - Given little data, there may be overfitting:
 - \(P(x|\theta) \) is maximized, but \(\theta \) is unreasonable
 - 0 probabilities – VERY BAD

- **Example:**
 - Given 10 casino rolls, we observe
 \[
 x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 \\
 \]
 - Then:
 - \(a_{FF} = 1; \ a_{FL} = 0 \)
 - \(b_{F1} = b_{F3} = .2; \ b_{F2} = .3; \ b_{F4} = 0; \ b_{F5} = b_{F6} = .1 \)

Pseudocounts

- **Solution for small training sets:**
 - Add pseudocounts
 \[
 \begin{align*}
 A_{ij} &= \text{# times state transition } i \rightarrow j \text{ occurs in } y \\
 B_{ik} &= \text{# times state } i \text{ in } y \text{ emits } k \text{ in } x
 \end{align*}
 \]
 - \(R_{ij}, S_{jk} \) are pseudocounts representing our prior belief
 - Total pseudocounts: \(R_i = \sum_j R_{ij}, S_i = \sum_k S_{ik} \)
 - "strength" of prior belief,
 - total number of imaginary instances in the prior

- **Larger total pseudocounts \(\Rightarrow \) strong prior belief**

- **Small total pseudocounts:** just to avoid 0 probabilities --- smoothing
Unsupervised ML estimation

Given $x = x_1 \ldots x_N$ for which the true state path $y = y_1 \ldots y_N$ is unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ.
1. Estimate A_{ij}, B_{ik} in the training data
 - How? $A_{ij} = \sum_{n}(y_i = j, y_{i+1} = k)$, $B_k = \sum_n(y_n = k) x_n$.
 - Update θ according to A_{ij}, B_{ik}
 - Now a “supervised learning” problem
2. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
The Baum-Welch algorithm

- The complete log likelihood
 \[\zeta(\theta; x, y) = \log p(x, y) = \log \prod_{t=1}^{T} p(y_{t+1} \mid y_{t}, x_{t}) \prod_{t=2}^{T} p(y_{t} \mid y_{t-1}, x_{t-1}) \prod_{t=1}^{T} p(x_{t} \mid x_{t-1}) \]

- The expected complete log likelihood
 \[E(\theta; x, y) = \sum_{x} \left(\log p(x_{t} \mid y_{t}) \right) + \sum_{t=2}^{T} \left(\log p(y_{t} \mid y_{t-1}, x_{t-1}) \right) + \sum_{t=1}^{T} \left(\log p(x_{t} \mid x_{t-1}) \right) \]

- EM
 - The E step
 \[y'_{n,t} = \langle Y_{n,t} \rangle = p(y_{n,t} = 1 \mid x_{n}) \]
 \[z'_{n,t} = \langle Y_{n,t-1}; y'_{n,t} \rangle = p(y_{n,t-1} = 1, y'_{n,t} = 1 \mid x_{n}) \]
 - The M step ("symbolically" identical to MLE)
 \[\pi_{j}^{MC} = \frac{\sum_{n=1}^{N} y'_{n,j}}{N} \]
 \[a_{ij}^{MC} = \frac{\sum_{n=1}^{N} \sum_{t=2}^{T} y'_{n,i} \cdot z'_{n,t-1} \cdot y'_{n,t} \cdot y_{n,t-1}}{\sum_{n=1}^{N} \sum_{t=2}^{T} y'_{n,i} \cdot z'_{n,t-1} \cdot y'_{n,t}} \]
 \[b_{k}^{MC} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} y'_{n,j} \cdot x'_{n,t} \cdot y'_{n,t} \cdot y_{n,t}}{\sum_{n=1}^{N} \sum_{t=1}^{T} y'_{n,j} \cdot x'_{n,t} \cdot y'_{n,t}} \]

The Baum-Welch algorithm -- comments

Time Complexity:

- # iterations \times O(K^2N)
- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting
Summary: the HMM algorithms

Questions:

- **Evaluation**: What is the probability of the observed sequence? *Forward*
- **Decoding**: What is the probability that the state of the 3rd roll is loaded, given the observed sequence? *Forward-Backward*
- **Decoding**: What is the most likely die sequence? *Viterbi*
- **Learning**: Under what parameterization are the observed sequences most probable? *Baum-Welch (EM)*

Applications of HMMs

- **Some early applications of HMMs**
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels

- **In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.**

- **Some current applications of HMMs to biology**
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence
Typical structure of a gene

GENSCAN (Burge & Karlin)
Shortcomings of Hidden Markov Model

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.

- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations $P(Y, X)$, but in a prediction task, we need the conditional probability $P(Y|X)$

Recall Generative vs. Discriminative Classifiers

- Goal: Wish to learn $f: X \rightarrow Y$, e.g., $P(Y|X)$

 - Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for $P(X|Y)$, $P(Y)$
 This is a ‘generative’ model of the data!
 - Estimate parameters of $P(X|Y)$, $P(Y)$ directly from training data
 - Use Bayes rule to calculate $P(Y|X=x)$

 - Discriminative classifiers (e.g., logistic regression)
 - Directly assume some functional form for $P(Y|X)$
 This is a ‘discriminative’ model of the data!
 - Estimate parameters of $P(Y|X)$ directly from training data
Structured Conditional Models

- Conditional probability $P(\text{label sequence } y \mid \text{observation sequence } x)$ rather than joint probability $P(y, x)$
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Conditional Distribution

- If the graph $G = (V, E)$ of Y is a tree, the conditional distribution over the label sequence $Y = y$, given $X = x$, by the Hammersley Clifford theorem of random fields is:
 $$p(y \mid x) \propto \exp \left(\sum_{e \in E} \lambda_e \phi_e(e, y \mid y, x) + \sum_{v \in V} \mu_k g_k(v, y \mid x) \right)$$
 - x is a data sequence
 - y is a label sequence
 - v is a vertex from vertex set $V = \text{set of label random variables}$
 - e is an edge from edge set E over V
 - ϕ_e and g_k are given and fixed. g_k is a Boolean vertex feature; ϕ_e is a Boolean edge feature
 - k is the number of features
 - $\theta = (\lambda_1, \lambda_2, \ldots, \lambda_n; \mu_1, \mu_2, \ldots, \mu_k)$; λ_e and μ_k are parameters to be estimated
 - y_e is the set of components of y defined by edge e
 - y_v is the set of components of y defined by vertex v
Conditional Random Fields

\[P(y_{1:n} | x_{1:n}) = \frac{1}{Z(x_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, x_{1:n}) = \frac{1}{Z(x_{1:n}, w)} \prod_{i=1}^{n} \exp(w^T \Gamma(y_i, y_{i-1}, x_{1:n})) \]

- CRF is a partially directed model
 - Discriminative model
 - Usage of global normalizer \(Z(x) \)
 - Models the dependence between each state and the entire observation sequence

Conditional Random Fields

- General parametric form:

\[P(y|x) = \frac{1}{Z(x, \lambda, \mu)} \exp\left(\sum_{i=1}^{n} \sum_{k} \lambda_k f_k(y_i, y_{i-1}, x) + \sum_{i} \mu_i g_i(y_i, x) \right) \]
\[= \frac{1}{Z(x, \lambda, \mu)} \exp\left(\sum_{i=1}^{n} (\lambda^T \Gamma(y_i, y_{i-1}, x) + \mu^T g(y_i, x)) \right) \]

where \(Z(x, \lambda, \mu) = \sum_{y} \exp\left(\sum_{i=1}^{n} (\lambda^T \Gamma(y_i, y_{i-1}, x) + \mu^T g(y_i, x)) \right) \)
Conditional Random Fields

\[p_y(y | x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_c f(x, y) \right\} \]

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

CRFs: Inference

- Given CRF parameters \(\lambda \) and \(\mu \), find the \(y^* \) that maximizes \(P(y | x) \)

\[y^* = \arg \max_y \exp \left(\sum_{i=1}^{n} \left(\lambda^T f(y_i, y_{i-1}, x) + \mu^T g(y_i, x) \right) \right) \]

- Can ignore \(Z(x) \) because it is not a function of \(y \)
- Run the max-product algorithm on the junction-tree of CRF:

Same as Viterbi decoding used in HMMs!
CRF learning

- Given \(\{(x_d, y_d)\}_{d=1}^N \), find \(\lambda^*, \mu^* \) such that

\[
\lambda^*, \mu^* = \arg \max_{\lambda, \mu} L(\lambda, \mu) - \arg \max_{\lambda, \mu} \prod_{d=1}^N P(y_d|x_d, \lambda, \mu)
\]

\[
= \arg \max_{\lambda, \mu} \prod_{d=1}^N \frac{1}{Z(x_d, \lambda, \mu)} \exp \left(\sum_{i=1}^n (\lambda^T f(y_{d,i}, y_{d,i-1}, x_d) + \mu^T g(y_{d,i}, x_d)) \right)
\]

\[
= \arg \max_{\lambda, \mu} \sum_{d=1}^N \sum_{i=1}^n (\lambda^T f(y_{d,i}, y_{d,i-1}, x_d) + \mu^T g(y_{d,i}, x_d)) - \log Z(x_d, \lambda, \mu)
\]

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

- Computing the gradient w.r.t \(\lambda \):

\[
\nabla_\lambda L(\lambda, \mu) = \sum_{d=1}^N \sum_{i=1}^n f(y_{d,i}, y_{d,i-1}, x_d) - \sum_{y} P(y|x_d) \sum_{i=1}^n f(y_{d,i}, y_{d,i-1}, x_d)
\]

CRFs: some empirical results

- Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data
CRFs: some empirical results

- Parts of Speech tagging

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>oov error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69%</td>
<td>45.99%</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81%</td>
<td>26.99%</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27%</td>
<td>23.76%</td>
</tr>
</tbody>
</table>

- Using same set of features: HMM >= CRF
- Using additional overlapping features: CRF+ >> HMM

Summary

- Conditional Random Fields is a discriminative Structured Input Output model!
- HMM is a generative structured I/O model
- Complementary strength and weakness:
 1.
 2.
 3.
 ...