Computational Learning Theory – Part 2

Reading:
• Mitchell chapter 7

Suggested exercises:
• 7.1, 7.2, 7.5, 7.7

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 22, 2010

Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
• Probability of successful learning
• Number of training examples
• Complexity of hypothesis space
• Accuracy to which target function is approximated
• Manner in which training examples presented
What it means

[Haussler, 1988]: probability that the version space is not \(\epsilon \)-exhausted after \(m \) training examples is at most \(|H| e^{-\epsilon m}\)

\[
\Pr[(\exists h \in H) \text{s.t.} (\text{error}_{\text{train}}(h) = 0) \wedge (\text{error}_{\text{true}}(h) > \epsilon)] \leq |H| e^{-\epsilon m}
\]

Suppose we want this probability to be at most \(\delta \)

1. How many training examples suffice?

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]

2. If \(\text{error}_{\text{train}}(h) = 0 \) then with probability at least \((1-\delta)\):

\[
\text{error}_{\text{true}}(h) \leq \frac{1}{m} (\ln |H| + \ln(1/\delta))
\]

Agnostic Learning

Result we proved: probability, after \(m \) training examples, that \(H \) contains a hypothesis \(h \) with zero training error, but true error greater than \(\epsilon \) is bounded

\[
\Pr[(\exists h \in H) \text{s.t.} (\text{error}_{\text{train}}(h) = 0) \wedge (\text{error}_{\text{true}}(h) > \epsilon)] \leq |H| e^{-\epsilon m}
\]

Agnostic case: don’t know whether \(H \) contains a perfect hypothesis

\[
\Pr[(\exists h \in H) \text{s.t.} (\text{error}_{\text{true}}(h) > \epsilon + \text{error}_{\text{train}}(h))] \leq |H| e^{-2\epsilon^2 m}
\]
General Hoeffding Bounds

- When estimating the mean θ inside $[a, b]$ from m examples
 \[P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-2m\epsilon^2} \]
- When estimating a probability θ is inside $[0, 1]$, so
 \[P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-2m\epsilon^2} \]
- And if we’re interested in only one-sided error, then
 \[P((E[\hat{\theta}] - \theta) > \epsilon) \leq e^{-2m\epsilon^2} \]

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_p(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $size(c)$.
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $err_p(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $size(c)$.

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ϵ-exhaust $V_{S_{H,D}}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \geq \frac{1}{\epsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon) \right)$$

Compare to our earlier results based on $|H|$:

$$m \geq \frac{1}{\epsilon} \left(\ln(1/\delta) + \ln |H| \right)$$
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

![Instance space X with VC dimension 3](image)

VC dimension: examples

What is VC dimension of lines in a plane?
- $H_2 = \{ ((w_0 + w_1 x_1 + w_2 x_2) > 0 \rightarrow y=1) \}$
VC dimension: examples

What is VC dimension of

- $H_2 = \{(w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y = 1\}\$
 - $VC(H_2) = 3$

- $H_n =$ linear separating hyperplanes in n dimensions,
 $VC(H_n) = n + 1$

Can you give an upper bound on $VC(H)$ in terms of $|H|$, for any hypothesis space H?
(hint: yes)
More VC Dimension Examples to Think About

• Logistic regression over \(n \) continuous features
 – Over \(n \) boolean features?

• Linear SVM over \(n \) continuous features

• Decision trees defined over \(n \) boolean features
 \(F: \langle X_1, \ldots, X_n \rangle \rightarrow Y \)

• Decision trees of depth 2 defined over \(n \) features

• How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples \(m \) suffice to assure that any hypothesis that fits the training data perfectly is probably \((1-\delta)\) approximately \((\epsilon)\) correct?

\[
m \geq \frac{1}{\epsilon} \left(4 \log_2(2/\delta) + 8 VC(H) \log_2(13/\epsilon) \right)
\]

How tight is this bound?
Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ϵ) correct?

$$m \geq \frac{1}{\epsilon}(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that $VC(C) > 1$, any learner L, any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution D and a target concept in C, such that if L observes fewer examples than

$$\max \left[\frac{1}{\epsilon} \log(1/\delta), \frac{VC(C) - 1}{32\epsilon} \right]$$

Then with probability at least δ, L outputs a hypothesis with $error_D(h) > \epsilon$

Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

![Graph showing the relationship between size of tree and accuracy](image-url)
Structural Risk Minimization

Which hypothesis space should we choose?
• Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

\[
error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}
\]

* unfortunately a somewhat loose bound...

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:
• Instances drawn at random from X according to distribution D
• Learner must classify each instance before receiving correct classification from teacher
• Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean literals

Find-S:
- Initialize h to the most specific hypothesis $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots l_n \land \neg l_n$
- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h?

Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:
- Learn concept using version space **Candidate-Elimination** algorithm
- Classify new instances by majority vote of version space members

How many mistakes before converging to correct h?
- ... in worst case?
- ... in best case?
Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in\text{learning algorithms}} M_A(C)$$

$$VC(C) \leq Opt(C) \leq M_{Halving}(C) \leq \log_2(|C|).$$

Weighted Majority Algorithm

a_i denotes the i^{th} prediction algorithm in the pool A of algorithms. w_i denotes the weight associated with a_i.

- For all i initialize $w_i \leftarrow 1$
- For each training example $(x, c(x))$
 * Initialize q_0 and q_1 to 0
 * For each prediction algorithm a_i
 - If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$
 - If $a_i(x) = 1$ then $q_1 \leftarrow q_1 + w_i$
 * If $q_1 > q_0$ then predict $c(x) = 1$
 * If $q_0 > q_1$ then predict $c(x) = 0$
 * If $q_1 = q_0$ then predict 0 or 1 at random for $c(x)$
 * For each prediction algorithm a_i in A do
 - If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

when $\beta = 0$, equivalent to the Halving algorithm...
Weighted Majority

[Relative mistake bound for WEIGHTED-MAJORITY] Let \(D \) be any sequence of training examples, let \(A \) be any set of \(n \) prediction algorithms, and let \(k \) be the minimum number of mistakes made by any algorithm in \(A \) for the training sequence \(D \). Then the number of mistakes over \(D \) made by the WEIGHTED-MAJORITY algorithm using \(\beta = \frac{1}{2} \) is at most

\[
2.4(k + \log_2 n)
\]
What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples provided at random

- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where \(c \in H \))
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps \(c \) not in \(H \))

- VC dimension as measure of complexity of \(H \)

- Mistake bounds

Extra slides
Training

Input: a labeled training set \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \)
number of epochs \(T \)

Output: a list of weighted perceptrons \(\{(v_1, c_1), \ldots, (v_k, c_k)\} \)

- Initialize: \(k := 0, v_1 := 0, c_1 := 0 \).
- Repeat \(T \) times:
 - For \(i = 1, \ldots, m \):
 * Compute prediction: \(\hat{y} := \text{sign}(v_k \cdot x_i) \)
 * If \(\hat{y} = y \) then \(c_k := c_k + 1 \).
 else \(v_{k+1} := v_k + y_i x_i; \)
 \(c_{k+1} := 1; \)
 \(k := k + 1. \)

Prediction

Given: the list of weighted perceptrons: \(\{(v_1, c_1), \ldots, (v_k, c_k)\} \)
an unlabeled instance: \(x \)

calculate a predicted label \(\hat{y} \) as follows:

\[
s = \sum_{i=1}^{k} c_i \text{sign}(v_i \cdot x);
\hat{y} = \text{sign}(s).
\]

* here \(y \) is +1 or -1

Voted Perceptron

[Freund & Shapire, 1999]
Mistake Bounds for Voted Perceptron

When data is linearly separable:

Theorem 1 (Block, Novikoff) *Let* \(\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle \) *be a sequence of labeled examples with* \(\|x_i\| \leq R \). *Suppose that there exists a vector* \(u \) *such that* \(\|u\| = 1 \) *and* \(y_i (u \cdot x_i) \geq \gamma \) *for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most* \(\{(R/\gamma)^2 \} \).
Mistake Bounds for Voted Perceptron

When data is linearly separable:

Theorem 1 (Block, Novikoff) Let \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) be a sequence of labeled examples with \(\|x_i\| \leq R \). Suppose that there exists a vector \(u \) such that \(||u|| = 1 \) and \(y_i(u \cdot x_i) \geq \gamma \) for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most \((R/\gamma)^2 \).

When not linearly separable:

Theorem 2 Let \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) be a sequence of labeled examples with \(||x_i|| \leq R \). Let \(u \) be any vector with \(||u|| = 1 \) and let \(\gamma > 0 \). Define the deviation of each example as
\[
d_i = \max\{0, \gamma - y_i(u \cdot x_i)\},
\]
and define \(D = \sqrt{\sum_{i=1}^m d_i^2} \). Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by
\[
\left(\frac{R + D}{\gamma}\right)^2.
\]