Rationale: Combination of methods

- There is no algorithm that is always the most accurate
- We can select simple “weak” classification or regression methods and combine them into a single “strong” method
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations (Modalities)
 - Training sets
 - Subproblems
- The problem: how to combine them
Some early algorithms

- **Boosting by filtering (Schapire 1990)**
 - Run weak learner on differently filtered example sets
 - Combine weak hypotheses
 - Requires knowledge on the performance of weak learner

- **Boosting by majority (Freund 1995)**
 - Run weak learner on weighted example set
 - Combine weak hypotheses linearly
 - Requires knowledge on the performance of weak learner

- **Bagging (Breiman 1996)**
 - Run weak learner on bootstrap replicates of the training set
 - Average weak hypotheses
 - Reduces variance

Combination of classifiers

- Suppose we have a family of component classifiers (generating ±1 labels) such as decision stumps:

\[h(x; \theta) = \text{sign}(wx_k + b) \]

where \(\theta = \{k, w, b\} \)

- Each decision stump pays attention to only a single component of the input vector
Combination of classifiers con’d

- We’d like to combine the simple classifiers additively so that the final classifier is the sign of

\[
\hat{h}(x) = \alpha_1 h(x; \theta_1) + ... + \alpha_m h(x; \theta_m)
\]

where the “votes” \(\{\alpha\}\) emphasize component classifiers that make more reliable predictions than others.

- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)

Measurement of error

- Loss function:

\[
\lambda(y, h(x)) \quad \text{(e.g. } I(y \neq h(x))\text{)}
\]

- Generalization error:

\[
L(h) = E[\lambda(y, h(x))]
\]

- Objective: find \(h\) with minimum generalization error

- Main boosting idea: minimize the empirical error:

\[
\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(x_i))
\]
Exponential Loss

- Empirical loss:
 \[
 \hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(x_i))
 \]

- Another possible measure of empirical loss is
 \[
 \hat{L}(h) = \sum_{i=1}^{n} \exp\{-y_i \hat{h}_m(x_i)\}
 \]

Exponential Loss

- One possible measure of empirical loss is
 \[
 \hat{L}(h) = \sum_{i=1}^{n} \exp\{-y_i \hat{h}_m(x_i)\}
 \]
 \[
 = \sum_{i=1}^{n} \exp\{-y_i \hat{h}_{m-1}(x_i) - y_i a_m h(x_i; \theta_m)\}
 \]
 \[
 = \sum_{i=1}^{n} \exp\{-y_i \hat{h}_{m-1}(x_i)\} \exp\{-y_i a_m h(x_i; \theta_m)\}
 \]
 \[
 = \sum_{i=1}^{n} W_{i}^{m-1} \exp\{-y_i a_m h(x_i; \theta_m)\} \quad \text{where}
 \]
 \[
 W_{i}^{m-1} = \exp\{-y_i \hat{h}_{m-1}(x_i)\}
 \]

- The combined classifier based on \(m - 1\) iterations defines a weighted loss criterion for the next simple classifier to add
- each training sample is weighted by its "classifiability" (or difficulty) seen by the classifier we have built so far
Linearization of loss function

- We can simplify a bit the estimation criterion for the new component classifiers (assuming α is small)

 $\exp\{-y_a h(x; \theta_a)\} \approx 1 - y_a h(x; \theta_a)$

- Now our empirical loss criterion reduces to

 $$\sum_{i=1}^{n} \exp\{-y_i \hat{h}_m(x_i)\}$$

 $$\approx \sum_{i=1}^{n} W_i^{m-1} (1 - y_i a_m h(x_i; \theta_m))$$

 $$= \sum_{i=1}^{n} W_i^{m-1} - a_n \sum_{i=1}^{n} W_i^{m-1} y_i h(x_i; \theta_m)$$

- We could choose a new component classifier to optimize this weighted agreement

A possible algorithm

- At stage m we find θ^* that maximize (or at least give a sufficiently high) weighted agreement:

 $$\sum_{i=1}^{n} W_i^{m-1} y_i h(x_i; \theta^*_m)$$

 - each sample is weighted by its "difficulty" under the previously combined $m - 1$ classifiers,
 - more "difficult" samples received heavier attention as they dominates the total loss

- Then we go back and find the “votes” α_m^* associated with the new classifier by minimizing the original weighted (exponential) loss

 $$\hat{L}(h) = \sum_{i=1}^{n} W_i^{m-1} \exp\{-y_i a_m h(x_i; \theta_m)\}$$

 $$= \sum_{i=1}^{n} W_i^{m-1} - a_n \sum_{i=1}^{n} W_i^{m-1} y_i h(x_i; \theta_m)$$
Boosting

- We have basically derived a Boosting algorithm that sequentially adds new component classifiers, each trained on reweighted training examples
 - each component classifier is presented with a slightly different problem

- AdaBoost preliminaries:
 - we work with normalized weights W_i on the training examples, initially uniform ($W_i = 1/n$)
 - the weight reflect the "degree of difficulty" of each datum on the latest classifier

The AdaBoost algorithm

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:

$$
\varepsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} W_i^{k-1} y_i h(x_i; \theta_k^*) \right)
$$

is better than change.
 - This is meant to be "easy" --- weak classifier

- Determine how many "votes" to assign to the new component classifier:

$$
\alpha_k = 0.5 \log((1 - \varepsilon_k) / \varepsilon_k)
$$

 - stronger classifier gets more votes

- Update the weights on the training examples:

$$
W_i^k = W_i^{k-1} \exp\left(-y_i a_k h(x_i; \theta_k)\right)
$$
The AdaBoost algorithm cont’d

- The final classifier after m boosting iterations is given by the sign of

\[\hat{h}(x) = \frac{\alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)}{\alpha_1 + \ldots + \alpha_m} \]

- the votes here are normalized for convenience

AdaBoost: summary

- Input:
 - N examples \(S_N = \{ (x_1, y_1), \ldots, (x_N, y_N) \} \)
 - a weak base learner \(h = h(x; \theta) \)
- Initialize: equal example weights \(w_i = 1/N \) for all \(i = 1..N \)
- Iterate for \(t = 1\ldots T \):
 1. train base learner according to weighted example set \((w_t, x) \) and obtain hypothesis \(h_t = h(x; \theta) \)
 2. compute hypothesis error \(\varepsilon_t \)
 3. compute hypothesis weight \(\alpha_t \)
 4. update example weights for next iteration \(w_{t+1} \)
- Output: final hypothesis as a linear combination of \(h_t \)
AdaBoost: dataflow diagram

Boosting: examples
Boosting: example cont’d
Base Learners

- Weak learners used in practice:
 - Decision stumps (axis parallel splits)
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - Radial basis function networks

- Can base learners operate on weighted examples?
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights

Boosting performance

- The error rate of component classifier (the decision stumps) does not improve much (if at all) over time
- But both training and testing error improve over time!
- Even after the training error of the combined classifier goes to zero, boosting iterations can still improve the generalization error!!
Why it is working?

- You will need some learning theory (to be covered in the next two lectures) to understand this fully, but for now let's just go over some high level ideas.
- Generalization Error:

 With high probability, Generalization error is less than:

 \[\hat{\Pr} [H(x) \neq y] + O \left(\sqrt{\frac{Td}{m}} \right) \]

 As \(T \) goes up, our bound becomes worse,
 Boosting should overfit!

Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire
Training Margins

- When a vote is taken, the more predictors agreeing, the more confident you are in your prediction.

- Margin for example:

\[
\text{margin}_i(x_i, y_i) = y_i \left[\frac{\alpha_1 h(x_i; \theta_1) + \ldots + \alpha_m h(x_i; \theta_m)}{\alpha_1 + \ldots + \alpha_m} \right]
\]

The margin lies in \([-1, 1]\) and is negative for all misclassified examples.

- Successive boosting iterations improve the majority vote or margin for the training examples

More Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire
A Margin Bound

• For any γ, the generalization error is less than:

$$\Pr(margin_{\delta}(x,y) \leq \gamma) + O\left(\frac{d}{\sqrt{m\gamma^2}}\right)$$

• It does not depend on T!!!

Summary

• Boosting takes a weak learner and converts it to a strong one

• Works by asymptotically minimizing the empirical error

• Effectively maximizes the margin of the combined hypothesis