Machine Learning
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Are there any “grouping” them ?
What is each group ?

How many ?

How to identify them?
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What is clustering?

\
e Clustering: the process of grouping a set of objects into

classes of similar objects

e high intra-class similarity

e low inter-class similarity

e Itis the commonest form of unsupervised learning

e Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data where
a classification of examples is given

e A common and important task that finds many applications in
Science, Engineering, information Science, and other places
Group genes that perform the same function
Group individuals that has similar political view
Categorize documents of similar topics
Ideality similar objects from pictures
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Issues for clustering :
e What is a natural grouping among these objects?
e Definition of "groupness"
e What makes objects “related”?
e Definition of "similarity/distance"
e Representation for objects
e Vector space? Normalization?
e How many clusters?
e Fixed a priori?
e Completely data driven?
Avoid “trivial” clusters - too large or small
e Clustering Algorithms
e Partitional algorithms
e Hierarchical algorithms
e Formal foundation and convergence
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What is Similarity?

Hard to define!
But we know it
when we see it

e The real meaning of similarity is a philosophical question. We will take a more
pragmatic approach

e Depends on representation and algorithm. For many rep./alg., easier to think in terms
of a distance (rather than similarity) between vectors.
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What properties should a sels
distance measure have? o
e D(A,B)=D(B,A) Symmetry
e D(AJA)=0 Constancy of Self-Similarity
e DAB)=0I1IfA=B Positivity Separation
e D(AB)<D(A,C)+ D(B,C) Triangular Inequality
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Intuitions behind desirable sels
distance measure properties oo

!
e D(A,B)=D(B,A) Symmetry
e Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
e D(AAA)=0 Constancy of Self-Similarity
e Otherwise you could claim "Alex looks more like Bob, than Bob does"
e DAB)=0I1IfA=B Positivity Separation
e Otherwise there are objects in your world that are different, but you cannot tell
apart.
e D(AB)<D(A,C)+ D(B,C) Triangular Inequality
e Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but

Bob is very unlike Carl"
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Distance Measures: Minkowski sels
Metric o2

e Suppose two object x and y both have p features

X:(XI’XZ’.“'Xp)
Y= Y2 Yp)
e The Minkowski metric is defined by

dx y)= | lx-yl

e Most Common Minkowski Metrics

P
1,1 =2 (Euclidean distance ) d(x,y)=2/> | xi—yif
i=1

p

2, r =1 (Manhattan distance) d(x, y):Z| Xi— Vil
i=1

3,r =+ ("sup" distance ) d(x,y)= max [ xi—yil
<i<p
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1: Euclidean distance: 3/4%+32 =5.
2: Manhattan distance: 4+3=7.
3: "sup"distance: max{4,3}=4.
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Hamming distance o

e Manhattan distance is called Hamming distance when all features
are binary.

e Gene Expression Levels Under 17 Conditions (1-High,0-Low)

1234567 89 10111213 14 15 16 17
GeneAO 11 001001001 1 1 0 01
GeneBO 111000011111 1011

Hamming Distance : #(01)+#(10)=4+1=5.
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Similarity Measures: Correlation sels
Coefficient o

Expression Level Expression Level

Gene A .\\./\\./\\ Gene B
7 }0’0’ \e Gene B P P Gene A
Time > Time >
Expression Level
i ° Gene B
‘/’/\.\’/ :Gene A
Time
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Similarity Measures: Correlation sess
Coefficient s

e Pearson correlation coefficient

306 - X)(¥ - Y)
sty = [ - _ 3 _
V“Z(X.fX)zxZ(yry)2

— p — p
Wherex:%;x‘ and y:lpzl Y.

Is(x,y)[ <1

e Special case: cosine distance

Xy
x|{3]

s(x,y) = |
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Edit Distance;

A generic technique for measuring similarity

e To measure the similarity between two objects, transform one
of the objects into the other, and measure how much effort it
took. The measure of effort becomes the distance measure.

The distance between Patty and Selma.

Change dress color, 1 point
Change earring shape, 1 point
Change hair part, 1 point

D(Patty,Selma) = 3

The distance between Marge and Selma.

Change dress color, 1 point
Add earrings, 1 point
Decrease height, 1 point
Take up smoking, 1 point
Lose weight, 1 point

DPMarge,Selma) = 5
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This is called the
Edit distance

or the
Transformation distance

Clustering Algorithms

e Partitional algorithms

e Usually start with a random (partial) partitioning

e Refine it iteratively
K means clustering
Mixture-Model based clustering

e Hierarchical algorithms
e Bottom-up, agglomerative
e Top-down, divisive
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Hierarchical Clustering

\
e Build a tree-based hierarchical taxonomy (dendrogram) from

a set of documents.
animal

vertebrate inverfebrate

fish 1‘7?116 amphib. mammal  woTm insect cruitacean

e Note that hierarchies are commonly used to organize
information, for example in a web portal.

e Yahoo! is hierarchy is manually created, we will focus on automatic creation of
hierarchies in data mining.
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Dendogram o

e A Useful Tool for Summarizing Similarity Measurement

e The similarity between two objects in a dendrogram is represented as the height
of the lowest internal node they share.

e Clustering obtained by cutting the dendrogram at a desired
level: each connected component forms a cluster.
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Hierarchical Clustering

e Bottom-Up Agglomerative Clustering
e Starts with each obj in a separate cluster
e then repeatedly joins the closest pair of clusters,
e until there is only one cluster.

The history of merging forms a binary tree or hierarchy.

e Top-Down divisive
e Starting with all the data in a single cluster,
e Consider every possible way to divide the cluster into two. Choose the best
division
e And recursively operate on both sides.
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Closest pair of clusters

The distance between two clusters is defined as the distance
between

e Single-Link

e Nearest Neighbor: their closest members.
e Complete-Link

e Furthest Neighbor: their furthest members.
e Centroid:

e Clusters whose centroids (centers of gravity) are the most cosine-similar

e Average:

e average of all cross-cluster pairs.
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Single-Link Method 5
Euclidean Distance
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Distance Matrix
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Complete-Link Method o
Euclidean Distance
\\
N
1) (2) 3)
b ¢ d b ¢ d c d c,d
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Single Link Example Complete Link Example
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Eric Xing © Eric Xing @ CMU, 2006-2008 24

12



Computational Complexity

e In the first iteration, all HAC methods need to compute

similarity of all pairs of n individual instances which is O(n?).

e In each of the subsequent n—-2 merging iterations, compute
the distance between the most recently created cluster and all

other existing clusters.

¢ In order to maintain an overall O(n?) performance, computing
similarity to each other cluster must be done in constant time.

e Else O(n? log n) or O(n3) if done naively
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Local-optimality of HAC
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Local-optimality of HAC

K
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Partitioning Algorithms

e Partitioning method: Construct a partition of n objects into a
set of K clusters

e Given: a set of objects and the number K

e Find: a partition of K clusters that optimizes the chosen
partitioning criterion
e Globally optimal: exhaustively enumerate all partitions
e Effective heuristic methods: K-means and K-medoids algorithms
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K-Means o
Algorithm

1.

2

3

Decide on a value for k.
Initialize the k cluster centers randomly if necessary.

Decide the class memberships of the N objects by assigning them
to the nearest cluster centroids (aka the center of gravity or mean)

" 1 o
Mk:azxi

i€Ch

Re-estimate the k cluster centers, by assuming the memberships
found above are correct.

If none of the N objects changed membership in the last iteration,
exit. Otherwise go to 3.
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K-means Clustering: Step 3 o
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Convergence

|
e Why should the K-means algorithm ever reach a fixed point?

e -- A state in which clusters don’t change.

e K-means is a special case of a general procedure known as
the Expectation Maximization (EM) algorithm.
e EM is known to converge.
e Number of iterations could be large. "

e (Goodness measure

e sum of squared distances from cluster centroid:
mg

k
SDk, =Y |z —mll>  SDg = > 8Dk, :

j=1 i=1

e Reassignment monotonically decreases SD since each vector
is assigned to the closest centroid.
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Time Complexity '

e Computing distance between two objs is O(m) where m is the
dimensionality of the vectors.

e Reassigning clusters: O(Kn) distance computations, or
O(Knm).

e Computing centroids: Each doc gets added once to some
centroid: O(nm).

e Assume these two steps are each done once for | iterations:
O(IKnm).
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Seed Choice

e Results can vary based on random seed selection.
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e Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings.
e Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
e Try out multiple starting points (very important!!!)
e Initialize with the results of another method.
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How Many Clusters? '

e Number of clusters K is given
e Partition n docs into predetermined number of clusters

e Finding the “right” number of clusters is part of the problem
e Given objs, partition into an “appropriate” number of subsets.
e E.g., for query results - ideal value of K not known up front - though Ul may

impose limits.

e Solve an optimization problem: penalize having lots of
clusters
e application dependent, e.g., compressed summary of search results list.
e Information theoretic approaches: model-based approach

e Tradeoff between having more clusters (better focus within
each cluster) and having too many clusters

e Nonparametric Bayesian Inference
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What Is A Good Clustering?

|
e Internal criterion: A good clustering will produce high quality

clusters in which:
e theintra-class (that is, intra-cluster) similarity is high
o the inter-class similarity is low

e The measured quality of a clustering depends on both the obj representation and
the similarity measure used

e External criteria for clustering quality

e Quality measured by its ability to discover some or all of the hidden patterns or
latent classes in gold standard data

e Assesses a clustering with respect to ground truth
e Example:
Purity
entropy of classes in clusters (or mutual information between classes and clusters)
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External Evaluation of Cluster
Quality oo

e Simple measure: purity, the ratio between the dominant class
in the cluster and the size of cluster

e Assume documents with C gold standard classes, while our clustering algorithms
produce K clusters, w4, w,, ..., Wy with n; members.

1
Purity(w;) = — max(n;;) jeC
i J

(3

e Example / _5\ .!/ / --._5‘\3 {K,_._ \:
W W

Cluster [ Cluster 11 Cluster [T
Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6
Cluster Ill: Purity = 1/5 (max(2, 0, 3)) = 3/5
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Other partitioning Methods

\
e Partitioning around medioids (PAM): instead of averages, use

multidim medians as centroids (cluster “prototypes”). Dudoit
and Freedland (2002).

e Self-organizing maps (SOM): add an underlying “topology”
(neighboring structure on a lattice) that relates cluster
centroids to one another. Kohonen (1997), Tamayo et al.
(1999).

e Fuzzy k-means: allow for a “gradation” of points between
clusters; soft partitions. Gash and Eisen (2002).

e Mixture-based clustering: implemented through an EM
(Expectation-Maximization)algorithm. This provides soft
partitioning, and allows for modeling of cluster centroids and
shapes. Yeung et al. (2001), McLachlan et al. (2002)
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