Final Project Report: Learning optimal
parameters of Graph-Based | mage Segmentation

Stefan Zickler
szi ckl er @s. cmu. edu

Abstract

The performance of many modern image segmentation algusitihe-
pends greatly on the choice of their various parameterglifimaally, in

the vision community these parameters have often been rhatwzed

which can lead to non-optimal performance. In this projestattempt to
automatically find the optimal set of a graph-based imagensegation
algorithm’s parameters using an evolutionary algorithme Mtroduce
an error metric that can be used to evaluate graph-baseceségfion
results by comparing them to a set of human-labeled segtimma\We
then introduce an evolutionary algorithm which attemptieé&on the op-
timal set of parameters for the graph-based segmentatjonithim. The
performance of the results achieved by the evolutionamgrétgn is ana-
lyzed and compared to the standard set of manually tweakedeers.

1 Introduction

The performance of many modern image segmentation algwittepends greatly on the
choice of their various parameters. Traditionally, in tigdon community these parameters
have often been manually tuned which can lead to non-opperdbrmance. In this project
we attempt to automatically find the optimal set of a grapbebdamage segmentation al-
gorithm’s parameters. In particular, we will investiga@ahevolutionary algorithms can
be used to solve this problem.

2 Reéated Work

Graph based image-segmentation is a fast and efficient chethgenerating a set of su-
perpixels, also known as segments, from an image. They cegernld edge-based ap-
proaches as they not only consider local pixel-based festurut instead look at global
similarities within the image [3]. In the published litena¢, the graph-based algorithm has
been run with a fixed, hand-tweaked set of parameters witmpusystematic optimization.
Unfortunately, there exists no direct scientific metric dfavmakes a “good” image seg-
mentation, other than the general idea that regions whiekiaually (or even contextually)
similar should be grouped together to become part of the semment. A frequent goal
of image-segmentation is to determine the boundaries ¢f eaatextual object within the
image. Thus, one of the best available methods of evalugtmguality of an image seg-
mentation algorithm is by comparing it to some sort of grotrath, such as images which

have been manually segmented by humans. We will follow th@ach in this project
by comparing the results of a graph-based segmentatiomithigoto the corresponding
human segmentations.

Genetic algorithms (also known as evolutionary algorithhes/e been a commonly used
technique to perform parameter optimization [5][1][2]. €jhare particularly interesting
because they can perform an efficient search without hatdvaggons about the linearity
of the function that is being optimized. Evolutionary aligfems follow the idea that the set
of parameters can be improved by mutation, evaluation, andvival of the fittest”, similar
to evolutionary processes in biology. Evolutionary algoris are suited for our scenario,
because we are not required to build a large dataset in agl\(anch as needed for e.g.
regression-based methods), but rather generate reqainguless on the go.

3 Methodology

We would like to learn the set of parametéfswvhich will minimize the mean segmentation
error of our algorithm for some training datagétvhich containgV images.

N
. 1
arg min (N Z error(graphseg(t;, X)))

i=1

In our case the image segmentation algorithm has three éreeeters: a smoothing factor
o, a scalark which effectively determines the size of the created supsters, andnin,
the minimum component size after post-processing. Thexefo= [0, k, min|.

3.1 Segmentation Performance Metric

Before we can concentrate on the actual parameter optiizatoblem, we need to find
a way of quantitatively comparing a computer-generatechsegation to the ground truth.
In particular, we want to determine how well the edges ofargin our generated segmen-
tation will match the edges of regions in the hand-labelealjes. We do so by introducing
an error metric where an error of zero will represent a pergegmentation. Our error
metric has two source components: oversegmentation amdrundersegmentation error.
Oversegmentation error is caused by our algorithm findiggpreedges where there should
not be any. Undersegmentation is naturally its dual, namlgn our algorithm does not
generate a region-edge when in fact there should be one. fivie diee total segmentation
error to be the maximum of its two components, namely:

error = max(errorundes €70 over)

Our segmentation results are represented as binary edgeénwhere each pixel repre-
sents a border between two segments. We call these in¥ageand Shuman A Sample of
these two edge-images can be seen in figure 1(b) and (c). TWeeaggproach to compute
our two error components would be to overlay our two edgegesaand simply count all
non-overlapping pixels vs all expected pixels.

‘Shuman* Salgo| error _ ‘Salgo - ShumaA
|ShumaA over |Salgo|

This metric however is bad for two reasons. For one thing #ssuming that the human
segmentations are pixel-perfect which they are clearly Aonbther problem of this metric
is that it is an all or nothing approach. That is, a regioneesddpich is only one pixel
away from the correct location will be penalized as much asgéion-edge which is 100
pixels away. To overcome both of these problems, we intredumetric which has a more
probabilistic nature. We do so by constructing the distarmesform of our edge images,

errorunder —

(a) Original Image (b) Algorithm Segmentation (c) Human Segm. (Ground Truth)

- PP g/
- ,;g:

100 200 300 400 100 200 300 400 100 200 300 400

(d) D.T. Algorithm (e) D.T. Human (f) Oversegm. Error: A * D.T.(H)
e I RS : P P
100 100 100 T e -
7 . i“? Yad ?1 a
200 200 200 | e /;1
e
300 300 300 Lo
100 200 300 400 100 200 300 400 100 200 300 400

(g9) Undersegm. Error: H* D.T.(A) (h) MaxErr(Oversegm,Undersegm) (i) MaxCorrectness(A.-H.,H.-A.)

v/g/_\ N
100 _~ - — - 100 100 - -
S N . vl
- (B s el
200 7 . JIs A 200 200) Col
{ ”\3\) 24 . : LA
A f ///7/7 7 = j" o) e G .
300 R 300l =il 300 o -
100 200 300 400 100 200 300 400 100 200 300 400

Figure 1: A sample image from the Berkeley dataset

and then applying the logistic function to it with paramsetetich will give us a smoothed
grayscale widening of the edges in our original edge-images

‘Shuman* DT(SaIgo)| T ‘Salgo * DT(Shuman”
| Shumar] | Saigol

where DT is our modified distance transform. Note that thigrimgives us a smooth
transition from perfectly matching pixels to pixels whiate @onsidered too far away to be
considered a match at all. The modified distance transfonddtee error components can
be seen in figure 1(d)(e)(f)(g) respectively.

ETTOTunder —

3.2 Optimization Algorithm

As mentioned earlier, we will be using an evolutionary aitdon to find the optimal set of
parameters. The basic structure of the algorithm is degiotéigure 2. In our case, the fit-
ness of an individual is clearly the inverse ofdis-or as described in the previous section.
A population is a set of parameter vectors such tRapulation = {X;1, Xs,..., X}
where M is the population size and’ is the parameter vector of our segmentation al-
gorithm (X = [o, k,min]). The QROSSOVERfunction will select a random element of
the parameter vectoX and compute the mean from both of its parents. TherM 10N
function will mutate the offspring of a single parent by atglia random integer drawn
from a gaussian distribution to a randomly chosen elemetiteoparameter vectoY. The
MERGEANDCROP function will merge the children and parents into the samgugation
and then shrink this population back to six& by removing the entries with the lowest
fitness.

F' — Fitness Function

F; +—— Termination Fitness

G «—— Number of Generations

M «— Size of Population

p. < Crossover Frequency

pm —— Mutation Frequency

Population «—— RANDOMPOPULATION(M)
CALCFITNESSOFEACHINDIVIDUAL (Population)

while F(BESTINDIVIDUAL (Population)) < F; and GenerationNum < G

Parents «—— Population

Children «—— CROSSOVER Parents, p)

Children «— MUTATION(Parents, py,)
CALCFITNESSOFEACHINDIVIDUAL (Children)
Population «—— MERGEANDCROP(Parents, Children)
GenerationNum «— GenerationNum + 1

return(BESTINDIVIDUAL (Population))

Figure 2: Pseudocode of GA

4 Experiment

The experiment is performed on the manually segmented Bsrimage datasdit t p:

/I ww. cs. ber kel ey. edu/ pr oj ect s/ vi si on/ gr oupi ng/ segbench/ [4].
This dataset contains 300 images in which objects’ bouadadrave been annotated by
human subjects. We use a subset of these images as trainsgwddle we reserve
100 images as independent testing data. We run the gengtigtain described in the
previous section on the training data to find the optimal 6pacameters. As segmentation
algorithm, we use the publicly available standard impletaigon of the graph-based
segmentation algorithm [3]. We furthermore compute thenrteating error by using the
parameters which were found by the genetic algorithm onebiing set.

It should be noted that the Berkeley dataset actually offarkiple human segmentations
per image, thus offering multiple “ground truths” for eachage. We make use of this
fact by computing the error against each of these segmensaéind taking the minimum.
Thus if the algorithm perfectly matches any one of the hunegmentations of a given
image, it will be considered to have an error of zero on thatidar image. In our
experiments we use a population sizesaind crossover and mutation frequencie$) 6f
each. This means that at each iteration, we will genératéldren ands mutants, growing
the population to siz&0, which will then be shrunk to only contain the b&sndividuals
again. Certainly these values are trade-offs. Generatorg children or mutants increases
the chance of creating stronger individuals, but it alseéases computational complexity
per generation. Since the fitness computation for a singliwigtual will already take a
fairly long amount of time (approximately one minute for aiting set of 40 images, on
a modern Pentium 4 machine), we kept the population size andtion/crossover rates
fairly low.

The implementation of the entire genetic algorithm, of th®emetric computation, and
the experimental automation was done in Matlab.

05 T T T T T
0.45 4
0.4r
S 035f 1 ~
i}
& X
\,_; X X
0
€oosf . ________4
L | - - - e e e e
0.25F x B
X Top 8 Individuals
0.2 —O— Training H
—<— Testing
% — — -Baseline Training
— — -Baseline Testing
| | | | 1
0 5 10 15 20 25 30
Generations
Figure 3: Fitness curve (training set size 20).
5 Results

In figure 3 we can see the performance of the algorithm ovetipheliterations. The graph
was generated with a training set size20fimages. The y-axis in this graph represents
the fitness-value which is defined Bs- error. The solid blue line represents the training
fitness of the best individual of each generation. Furtheemnge show the fithesses of the
top 8 individuals for each generation. The numeric values and#s individual for each
generation can also be seen in table 5. Just as we would expeon the algorithmic
definition, the training fitness increases constantly. As typical for evolutionary pro-
cesses, there are certain periods of plateaus until findingkg mutation which increases
the fitness significantly. Eventually we see the trainingesconverge. We can already
see that our optimization algorithm easily outperformstibst-guessed values which were
suggested by the segmentation algorithm’s author (caledéline” and represented as
dashed lines in the graph). The parameters used for thisitmsere:c = 0.8, k = 300,
min = 50. If all we wanted is to tweak the segmentation algorithm fpadicular dataset
then our goal could already be considered achieved.

However, we would like to make sure that our new set of pararaés generally applicable
and will also perform well when used on other, non-traineddes. For this purpose we run
the segmentation algorithm on the independent testingwlittathe parameters obtained
during training iterations. The solid red line represehtsfitness-values of the testing set.
We can see the general trend of the testing fitness increadtimgnore generations. Again,
we can see a fairly quick convergence. More importantlyoihtemized results are all very
well above the manually tweaked parameter baseline (ddst@d In fact, this happens
already within the first iteration of the algorithm.

Iteration | x; (o) xo (K) x3 (min) Fitness (training)
1 0.4623 944.9364 734.3545 0.3583
2 1.1998 791.0263 652.4015 0.3895
3 1.1998 791.0263 652.4015 0.3895
4 1.0939 953.7888 364.9563 0.3928
5 1.1056 969.3711 176.7327 0.4035
6 1.1056 969.3711 176.7327 0.4035
7 1.1056 969.3711 176.7327 0.4035
8 1.1699 969.3711 176.7327 0.4140
9 1.1699 969.3711 176.7327 0.4140
10 1.1699 969.3711 176.7327 0.4140
11 1.1699 969.3711 176.7327 0.4140
12 1.1699 969.3711 176.7327 0.4140
13 1.1699 969.3711 147.5138 0.4171
14 1.1699 969.3711 147.5138 0.4171
15 1.1647 969.3711 103.4557 0.4190
16 1.1647 969.3711 103.4557 0.4190
17 1.1647 969.3711 103.4557 0.4190
18 1.1647 969.3711 103.4557 0.4190
19 1.1647 969.3711 103.4557 0.4190
20 1.1647 969.3711 103.4557 0.4190
21 1.1647 969.3711 103.4557 0.4190
22 1.1647 969.3711 103.4557 0.4190
23 1.1647 969.3711 103.4557 0.4190
24 1.1647 969.3711 103.4557 0.4190
25 1.1647 953.8638 105.7130 0.4201
26 1.1647 953.8638 103.7142 0.4225
27 1.1647 953.8638 103.6152 0.4225
28 1.1647 935.1816 103.6152 0.4240
29 1.1647 935.1816 103.6152 0.4240
30 1.1647 935.1816 103.6152 0.4240

Figure 4: Best individuals and their fitness-value for eaghagation (training set size 20).

In order to investigate what effect a larger training se¢ siight have, we re-ran the exper-
iment with a training set size afd which is twice as large as the previous run. The graph
of the increased training set can be found in figure 5. Whileotrexall result looks fairly
similar, we can notice that the difference between trairdng testing is not as drastic.
However, we can also notice that the testing set fitness lactiecreases slightly at about
iteration20. We suspect that this is because the algorithm is overfitsngarameters onto
the training set.

6 Conclusion

We have introduced a flexible error metric that can be usedrpare computer-generated
image segmentations to human-labeled ones. We have funtherintroduced a simple

evolutionary algorithm which makes use of this error metsifind an optimal set of param-
eters for a graph-based image segmentation algorithm. Wedralyzed the performance
of the introduced approach by running it on independemingiand testing sets. We have
furthermore compared its performance to a standard set nbiahgparameters which are
commonly used for this particular graph-based image setatien algorithm. While this

paper put the focus on a graph-based segmentation algoiittban be assumed that this

0351 %

0.3 4

Fitness (1-Error)

0.25 b

% Top 8 Individuals
—©— Training
0.2 —<— Testing H
— — — Baseline Training

— — — Baseline Testing
| | | I I

Il
0 5 10 15 20 25 30 35
Generations

XX

Figure 5: Fitness curve (training set size 40).

approach is easily extendable to any other segmentatiamithlgn that would otherwise
require manual parameter tweaking.

References

[1] T. Back and H.P. Schwefel. An overview of evolutionary algarithfor parameter
optimization. Evolutionary Computation, 1(1):1-23, 1993.

[2] S. Chernova and M. Veloso. An evolutionary approach ta fgarning for four-
legged robotslintelligent Robots and Systems, 2004.(1ROS 2004). Proceedings. 2004
|EEE/RSJ International Conference on, 3.

[3] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient Gr8ased Image Segmentation.
International Journal of Computer Vision, 59(2):167-181, 2004.

[4] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database ahtan segmented natural
images and its application to evaluating segmentationrisfigos and measuring eco-
logical statistics. IrfProc. 8th Int'| Conf. Computer Vision, volume 2, pages 416-423,
July 2001.

[5] A.H. Wright. Genetic algorithms for real parameter optiation. Foundations of
Genetic Algorithms, 1:205-218, 1991.

