
Final Project Report: Learning optimal
parameters of Graph-Based Image Segmentation

Stefan Zickler
szickler@cs.cmu.edu

Abstract

The performance of many modern image segmentation algorithms de-
pends greatly on the choice of their various parameters. Traditionally, in
the vision community these parameters have often been manually tuned
which can lead to non-optimal performance. In this project we attempt to
automatically find the optimal set of a graph-based image segmentation
algorithm’s parameters using an evolutionary algorithm. We introduce
an error metric that can be used to evaluate graph-based segmentation
results by comparing them to a set of human-labeled segmentations. We
then introduce an evolutionary algorithm which attempts tolearn the op-
timal set of parameters for the graph-based segmentation algorithm. The
performance of the results achieved by the evolutionary algorithm is ana-
lyzed and compared to the standard set of manually tweaked parameters.

1 Introduction

The performance of many modern image segmentation algorithms depends greatly on the
choice of their various parameters. Traditionally, in the vision community these parameters
have often been manually tuned which can lead to non-optimalperformance. In this project
we attempt to automatically find the optimal set of a graph-based image segmentation al-
gorithm’s parameters. In particular, we will investigate how evolutionary algorithms can
be used to solve this problem.

2 Related Work

Graph based image-segmentation is a fast and efficient method of generating a set of su-
perpixels, also known as segments, from an image. They supercede old edge-based ap-
proaches as they not only consider local pixel-based features, but instead look at global
similarities within the image [3]. In the published literature, the graph-based algorithm has
been run with a fixed, hand-tweaked set of parameters withoutany systematic optimization.
Unfortunately, there exists no direct scientific metric of what makes a “good” image seg-
mentation, other than the general idea that regions which are visually (or even contextually)
similar should be grouped together to become part of the samesegment. A frequent goal
of image-segmentation is to determine the boundaries of each contextual object within the
image. Thus, one of the best available methods of evaluatingthe quality of an image seg-
mentation algorithm is by comparing it to some sort of groundtruth, such as images which



have been manually segmented by humans. We will follow this approach in this project
by comparing the results of a graph-based segmentation algorithm to the corresponding
human segmentations.

Genetic algorithms (also known as evolutionary algorithms) have been a commonly used
technique to perform parameter optimization [5][1][2]. They are particularly interesting
because they can perform an efficient search without hard assumptions about the linearity
of the function that is being optimized. Evolutionary algorithms follow the idea that the set
of parameters can be improved by mutation, evaluation, and “survival of the fittest”, similar
to evolutionary processes in biology. Evolutionary algorithms are suited for our scenario,
because we are not required to build a large dataset in advance (such as needed for e.g.
regression-based methods), but rather generate required samples on the go.

3 Methodology

We would like to learn the set of parametersX which will minimize the mean segmentation
error of our algorithm for some training datasetT which containsN images.

arg min
X

(

1

N

N
∑

i=1

error(graphseg(ti,X))

)

In our case the image segmentation algorithm has three free parameters: a smoothing factor
σ, a scalark which effectively determines the size of the created superclusters, andmin,
the minimum component size after post-processing. ThereforeX = [σ, k,min].

3.1 Segmentation Performance Metric

Before we can concentrate on the actual parameter optimization problem, we need to find
a way of quantitatively comparing a computer-generated segmentation to the ground truth.
In particular, we want to determine how well the edges of regions in our generated segmen-
tation will match the edges of regions in the hand-labeled images. We do so by introducing
an error metric where an error of zero will represent a perfect segmentation. Our error
metric has two source components: oversegmentation error,and undersegmentation error.
Oversegmentation error is caused by our algorithm finding region-edges where there should
not be any. Undersegmentation is naturally its dual, namelywhen our algorithm does not
generate a region-edge when in fact there should be one. We define the total segmentation
error to be the maximum of its two components, namely:

error = max(errorunder, errorover)

Our segmentation results are represented as binary edge-images, where each pixel repre-
sents a border between two segments. We call these imagesSalgo andShuman. A sample of
these two edge-images can be seen in figure 1(b) and (c). The naive approach to compute
our two error components would be to overlay our two edge-images and simply count all
non-overlapping pixels vs all expected pixels.

errorunder =
|Shuman− Salgo|

|Shuman|
errorover =

|Salgo− Shuman|

|Salgo|

This metric however is bad for two reasons. For one thing, it is assuming that the human
segmentations are pixel-perfect which they are clearly not. Another problem of this metric
is that it is an all or nothing approach. That is, a region-edge which is only one pixel
away from the correct location will be penalized as much as a region-edge which is 100
pixels away. To overcome both of these problems, we introduce a metric which has a more
probabilistic nature. We do so by constructing the distancetransform of our edge images,



(a) Original Image

100 200 300 400

100

200

300

(b) Algorithm Segmentation

100 200 300 400

100

200

300

(c) Human Segm. (Ground Truth)

100 200 300 400

100

200

300

(d) D.T. Algorithm

100 200 300 400

100

200

300

(e) D.T. Human

100 200 300 400

100

200

300

(f) Oversegm. Error: A * D.T.(H)

100 200 300 400

100

200

300

(g) Undersegm. Error: H * D.T.(A)

100 200 300 400

100

200

300

(h) MaxErr(Oversegm,Undersegm)

100 200 300 400

100

200

300

(i) MaxCorrectness(A.−H.,H.−A.)

100 200 300 400

100

200

300

Figure 1: A sample image from the Berkeley dataset

and then applying the logistic function to it with parameters which will give us a smoothed
grayscale widening of the edges in our original edge-images.

errorunder =
|Shuman∗ DT(Salgo)|

|Shuman|
errorover =

|Salgo ∗ DT(Shuman)|

|Salgo|

where DT is our modified distance transform. Note that this metric gives us a smooth
transition from perfectly matching pixels to pixels which are considered too far away to be
considered a match at all. The modified distance transforms and the error components can
be seen in figure 1(d)(e)(f)(g) respectively.

3.2 Optimization Algorithm

As mentioned earlier, we will be using an evolutionary algorithm to find the optimal set of
parameters. The basic structure of the algorithm is depicted in figure 2. In our case, the fit-
ness of an individual is clearly the inverse of itserror as described in the previous section.
A population is a set of parameter vectors such thatPopulation = {X1,X2, ...,XM}
whereM is the population size andX is the parameter vector of our segmentation al-
gorithm (X = [σ, k,min]). The CROSSOVERfunction will select a random element of
the parameter vectorX and compute the mean from both of its parents. The MUTATION
function will mutate the offspring of a single parent by adding a random integer drawn
from a gaussian distribution to a randomly chosen element ofthe parameter vectorX. The
MERGEANDCROP function will merge the children and parents into the same population
and then shrink this population back to sizeM by removing the entries with the lowest
fitness.



F ←− Fitness Function
Ft ←− Termination Fitness
G←− Number of Generations
M ←− Size of Population
pc ←− Crossover Frequency
pm ←− Mutation Frequency
Population←− RANDOMPOPULATION(M)
CALCFITNESSOFEACHINDIVIDUAL (Population)
while F (BESTINDIVIDUAL (Population)) < Ft and GenerationNum < G
{

Parents←− Population
Children←− CROSSOVER(Parents, pc)
Children←− MUTATION(Parents, pm)
CALCFITNESSOFEACHINDIVIDUAL (Children)
Population←− MERGEANDCROP(Parents, Children)
GenerationNum←− GenerationNum + 1
}
return(BESTINDIVIDUAL (Population))

Figure 2: Pseudocode of GA

4 Experiment

The experiment is performed on the manually segmented Berkeley image datasethttp:
//www.cs.berkeley.edu/projects/vision/grouping/segbench/ [4].
This dataset contains 300 images in which objects’ boundaries have been annotated by
human subjects. We use a subset of these images as training data, while we reserve
100 images as independent testing data. We run the genetic algorithm described in the
previous section on the training data to find the optimal set of parameters. As segmentation
algorithm, we use the publicly available standard implementation of the graph-based
segmentation algorithm [3]. We furthermore compute the mean testing error by using the
parameters which were found by the genetic algorithm on the testing set.
It should be noted that the Berkeley dataset actually offersmultiple human segmentations
per image, thus offering multiple “ground truths” for each image. We make use of this
fact by computing the error against each of these segmentations and taking the minimum.
Thus if the algorithm perfectly matches any one of the human segmentations of a given
image, it will be considered to have an error of zero on that particular image. In our
experiments we use a population size of8 and crossover and mutation frequencies of0.8
each. This means that at each iteration, we will generate6 children and6 mutants, growing
the population to size20, which will then be shrunk to only contain the best8 individuals
again. Certainly these values are trade-offs. Generating more children or mutants increases
the chance of creating stronger individuals, but it also increases computational complexity
per generation. Since the fitness computation for a single individual will already take a
fairly long amount of time (approximately one minute for a training set of 40 images, on
a modern Pentium 4 machine), we kept the population size and mutation/crossover rates
fairly low.
The implementation of the entire genetic algorithm, of the error metric computation, and
the experimental automation was done in Matlab.



0 5 10 15 20 25 30

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

F
itn

es
s 

(1
−

E
rr

or
)

 

 

Top 8 Individuals
Training
Testing
Baseline Training
Baseline Testing

Figure 3: Fitness curve (training set size 20).

5 Results

In figure 3 we can see the performance of the algorithm over multiple iterations. The graph
was generated with a training set size of20 images. The y-axis in this graph represents
the fitness-value which is defined as1− error. The solid blue line represents the training
fitness of the best individual of each generation. Furthermore we show the fitnesses of the
top 8 individuals for each generation. The numeric values and thebest individual for each
generation can also be seen in table 5. Just as we would expectit from the algorithmic
definition, the training fitness increases constantly. As itis typical for evolutionary pro-
cesses, there are certain periods of plateaus until finding alucky mutation which increases
the fitness significantly. Eventually we see the training fitness converge. We can already
see that our optimization algorithm easily outperforms thebest-guessed values which were
suggested by the segmentation algorithm’s author (called “baseline” and represented as
dashed lines in the graph). The parameters used for this baseline were:σ = 0.8, k = 300,
min = 50. If all we wanted is to tweak the segmentation algorithm for aparticular dataset
then our goal could already be considered achieved.

However, we would like to make sure that our new set of parameters is generally applicable
and will also perform well when used on other, non-trained images. For this purpose we run
the segmentation algorithm on the independent testing datawith the parameters obtained
during training iterations. The solid red line represents the fitness-values of the testing set.
We can see the general trend of the testing fitness increasingwith more generations. Again,
we can see a fairly quick convergence. More importantly, theoptimized results are all very
well above the manually tweaked parameter baseline (dashedline). In fact, this happens
already within the first iteration of the algorithm.



Iteration x1 (σ) x2 (k) x3 (min) Fitness (training)
1 0.4623 944.9364 734.3545 0.3583
2 1.1998 791.0263 652.4015 0.3895
3 1.1998 791.0263 652.4015 0.3895
4 1.0939 953.7888 364.9563 0.3928
5 1.1056 969.3711 176.7327 0.4035
6 1.1056 969.3711 176.7327 0.4035
7 1.1056 969.3711 176.7327 0.4035
8 1.1699 969.3711 176.7327 0.4140
9 1.1699 969.3711 176.7327 0.4140
10 1.1699 969.3711 176.7327 0.4140
11 1.1699 969.3711 176.7327 0.4140
12 1.1699 969.3711 176.7327 0.4140
13 1.1699 969.3711 147.5138 0.4171
14 1.1699 969.3711 147.5138 0.4171
15 1.1647 969.3711 103.4557 0.4190
16 1.1647 969.3711 103.4557 0.4190
17 1.1647 969.3711 103.4557 0.4190
18 1.1647 969.3711 103.4557 0.4190
19 1.1647 969.3711 103.4557 0.4190
20 1.1647 969.3711 103.4557 0.4190
21 1.1647 969.3711 103.4557 0.4190
22 1.1647 969.3711 103.4557 0.4190
23 1.1647 969.3711 103.4557 0.4190
24 1.1647 969.3711 103.4557 0.4190
25 1.1647 953.8638 105.7130 0.4201
26 1.1647 953.8638 103.7142 0.4225
27 1.1647 953.8638 103.6152 0.4225
28 1.1647 935.1816 103.6152 0.4240
29 1.1647 935.1816 103.6152 0.4240
30 1.1647 935.1816 103.6152 0.4240

Figure 4: Best individuals and their fitness-value for each generation (training set size 20).

In order to investigate what effect a larger training set size might have, we re-ran the exper-
iment with a training set size of40 which is twice as large as the previous run. The graph
of the increased training set can be found in figure 5. While theoverall result looks fairly
similar, we can notice that the difference between trainingand testing is not as drastic.
However, we can also notice that the testing set fitness actually decreases slightly at about
iteration20. We suspect that this is because the algorithm is overfittingits parameters onto
the training set.

6 Conclusion

We have introduced a flexible error metric that can be used to compare computer-generated
image segmentations to human-labeled ones. We have furthermore introduced a simple
evolutionary algorithm which makes use of this error metricto find an optimal set of param-
eters for a graph-based image segmentation algorithm. We have analyzed the performance
of the introduced approach by running it on independent training and testing sets. We have
furthermore compared its performance to a standard set of manual parameters which are
commonly used for this particular graph-based image segmentation algorithm. While this
paper put the focus on a graph-based segmentation algorithm, it can be assumed that this



0 5 10 15 20 25 30 35

0.2

0.25

0.3

0.35

0.4

Generations

F
itn

es
s 

(1
−

E
rr

or
)

 

 

Top 8 Individuals
Training
Testing
Baseline Training
Baseline Testing

Figure 5: Fitness curve (training set size 40).

approach is easily extendable to any other segmentation algorithm that would otherwise
require manual parameter tweaking.

References

[1] T. Bäck and H.P. Schwefel. An overview of evolutionary algorithms for parameter
optimization.Evolutionary Computation, 1(1):1–23, 1993.

[2] S. Chernova and M. Veloso. An evolutionary approach to gait learning for four-
legged robots.Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, 3.

[3] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient Graph-Based Image Segmentation.
International Journal of Computer Vision, 59(2):167–181, 2004.

[4] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. InProc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423,
July 2001.

[5] A.H. Wright. Genetic algorithms for real parameter optimization. Foundations of
Genetic Algorithms, 1:205–218, 1991.


