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1 Introduction

Hierarchical structure is a natural and effective way of organizing information. Well known
examples include the Dewey Decimal System, Yahoo Directory and computer file systems.
We view such a hierarchy as a tree, which is consisted of a root node, certain levels of
intermediate nodes and leaf nodes. Suppose the documents to be classified could be fit into
a topic tree. Intuitively, if we know the parents of a leaf node, we can describe the leaf more
accurately. Therefore, we can use hierarchical information to improve the performance of
text classification. In this project, we propose a new method called General Hierarchical
Shrinkage (GHS), and compare it with the original Hierarchical Shrinkage (HS) method
and Naive Bayes.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
describes the GHS algorithm and some technical details. Section 4 presents experimen-
tal results, and compares GHS with HS and Naive Bayes, along with some preliminary
discussion. Section 5 concludes this paper.

2 Related Work

This project is inspired by the Hierarchical Shrinkage method in [McCallum 1998]. In HS,
we first train a Naive Bayes model for each class of documents. Each class is represented
with a leaf node in the topic tree. Given a non-leaf node A, the model of A is the mean of all
leaf nodes in the subtree with A as its root. Therefore, the model of root node is the mean
of all classes. Furthermore, we add a “super root” on top of the original root node, with
a uniform conditional distribution. After building the tree, we assume the model of each
class is a linear combination of all the nodes along the path from leaf to the super root. The
weights for linear combination can be optimized using a simple Expectation Maximization
(EM) method.

The HS method arises from a general parameter estimator called Shrinkage estimator or
James-Stein estimator, which was discovered by [Stein 1956], and later extended by [James
& Stein 1961]. The basic idea of Shrinkage Estimator is as follows: when estimating a
group of parameters (θ1, ..., θn), we can reduce the mean square error (MSE) by shrinking
{θi} towards their mean θ̄ =

∑
i θi, even if {θi} are completely independent. Since this

statement contradicts to people’s common sense, it’s called Stein’s Paradox. We will briefly
review it in Section 3.2.



[Koller & Sahami 1997] proposes another hierarchical method for text classification, which
is called Pachinko Machine (PM). PM also group classes into a topic tree, and compute
the model of each node based on all documents belonging to it. However, PM does not
combine different nodes together to produce mixture models. Instead, it takes a greedy
top-down search strategy to locate the “best” leaf-node for the document. The search start
at root. At each node A, PM picks a sub-branch of A according to certain criteria. PM
repeats this action until it reaches a leaf. Therefore, the accuracy of the entire process is
the product of accuracy on all levels. For example, if the accuracy on each level is 0.9, and
there are three levels, then the final accuracy is 0.93 = 0.73.

3 Methods

3.1 Naive Bayes

We assume a document is generated by two steps: first choose a class cj with probability
P (cj), then generate its bag of words according to the conditional distribution P (w|cj).
Based on this assumption, we use the algorithm in Table 6.2 of [Mitchell 1997] to train
Naive Bayes classifiers.

Given a labeled document di, the probability that it belongs to cj is P (cj |di) ∈ {0, 1}. We
estimate the prior distribution of class cj :

P (cj) =
|D|∑

i=1

P (cj |di)
|D| (1)

where |D| is the number of documents.

The conditional distribution is estimated by:

P (wt|cj) =
1 +

∑|D|
i=1 N(wt, di)P (cj |di)

|V |+ ∑|V |
s=1

∑|D|
i=1 N(ws, di)P (cj |di)

(2)

where |V | is the vocabulary size, N(wt, di) is the term-frequency (TF) os wt in di.

After the classifier is built, we classify future documents as:

c(di) = arg max
cj

P (cj |di) = arg max
cj

∏

wt∈di

P (wt|cj)P (cj)
P (wt)

(3)

3.2 James-Stein Estimator

The James-Stein estimator is simple to state, but hard to believe at first glance. Assume
there are a group of variables {xi}, i = 1, . . . , n, which follow Gaussian distribution
N(µ, σ2I), where I is the identity matrix. We are interested in estimating the set of pa-
rameters µ based on observation x = X . A natural and intuitive estimate is the maximum
likelihood estimation (MLE) µ̂ = X . [Stein 1956] demonstrated that, in terms of mini-
mizing mean square error (MSE) E(‖µ̂ − µ‖2), the James-Stein estimator is better than
MLE.

The original James-Stein estimator shrinks µ towards a prior µ = 0, when n > 2:



µ̂ = (1− (n− 2)σ2

‖X‖2 )X (4)

Notice that when n ≤ 2, MLE is the best.

A generalized James-Stein estimator can shrink µ towards non-zero prior, like the mean
X̄ =

∑
i xi, when n > 3:

µ̂ = X + (1− (n− 3)σ2

‖X − X̄‖2 )(X − X̄) (5)

The reason why people are shocked by Stein’s claim is that each µ̂i is affected by all
variables in x, even if they are completely independent. For example, let µ1 be the weight
of cookies in a given box, µ2 be the height of Mount Everest, and µ3 be the speed of light,
assume the results of our measurement x follow Gaussian distribution described above. The
James-Stein estimator can get better MSE than maximum likelihood estimator. It means
that the expectation of total MSE is reduced, while the MSE of each individual µi could be
better or worse.

3.3 General Hierarchical Shrinkage Model

Recall that in HS method, the final model θj of class cj is a linear combination of all the
nodes on the path from leaf to root. The model of each intermediate node in the tree is
again a linear combination of its children. Therefore, θj is actually a linear combination of
all classes:

θj =
|C|∑

k=1

λk
j θk,

|C|∑

k=1

λk
j = 1 (6)

where |C| is the number of classes.

The weights {λk
j } is constrained by the hierarchical structure. For example, if classes ck1

and ck2 are siblings of cj (i.e. They share the same parent node with cj), then λk1
j ≡ λk2

j .

Based on above observation, a straightforward generalization of HS method is to give {λk
j }

more freedom. The maximum freedom for {λk
j } is that they can take any non-negative

value, as long as
∑|C|

k=1 λk
j = 1. Like in HS method, we can still train the weights using

EM algorithm, although the number of weights increases from |C||L| in HS (|L| is the
depth of tree) to |C|2 in GHS. The training algorithm is very similar to that for HS:

In practice, in order to use all training data, we pick a single document as H for each folder,
and update λk

j according to the average of all folders. Although this strategy increases
computational complexity, it’s crucial to the success of GHS algorithm.

4 Experiments

4.1 Data Set

We use the Twenty Newsgroups data set collected by Ken Lang. It contains articles from 20
discussion groups of UseNet, with 1000 articles in each group. In order to compare results
with [McCallum 1998] and [Toutanova 2001], we pick 15 groups in our experiments, as



Step (1) Initialization: Set λk
j = 1/|C|. Split training data into two parts T and H .

Step (2) Naive Bayes: Use T to estimate θjt = P (wt|cj).

Step (3) EM Iteration: Use held-out set H to optimize weights {λk
j }.

E Step: Compute the probability that words in Hj is generated by θk.

βk
j =

∑

wt∈Hj

λk
j θk

t∑|C|
m λm

j θm
t

(7)

M Step: Update the weights by maximizing the expected likelihood of Hj generated by
the mixture distribution.

λk
j =

βk
j∑|C|

m βm
j

(8)

Step (4) Convergence Test: If
∑

m |λm
j − λ

m(old)
j | < ε, exit, otherwise continue with

Step (3).

Figure 1: General Hierarchical Shrinkage Algorithm

shown in Table 1. After removing stopwords according to SMART system’s list of 524
common words, there are 1.7 million words in total, and the size of vocabulary is about
100,000.

Table 1: Topic hierarchy of 15 groups

Vehicles rec.autos rec.motorcycles

Sports rec.sport.baseball rec.sport.hockey

Politics talk.politics.guns talk.politics.mideast talk.politics.misc

Religion alt.atheism soc.religion.christian talk.religion.misc

Computers comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware

comp.windows.x comp.sys.mac.hardware

We use the Bow toolkit 1 for indexing and printing out the word/document matrix, then use
Perl scripts to convert the matrix into data file that can be loaded by Matlab. We implement
Naive Bayes, HS and GHS method in Matlab. Due to the high dimension of features, we
heavily rely on sparse matrix representation to speed up computation.

1http://www.cs.cmu.edu/ mccallum/bow/



4.2 Field Selection

Each document in the newsgroup data set contains several fields, like “Subject”, “Author”,
“From”, “To” etc. However, some fields are too informative for classifiers. For example,
Naive Bayes classifier achieve nearly perfect accuracy (> 95%) using a single field “News-
groups”, with 10% training data. Since there are overlap between classes, 95% is almost the
upper bound that any reasonable classifier can achieve in this corpus. The “Newsgroups”
field list the names of newsgroups each document belongs to, which is the ground truth
for classification. Therefore, people have to pretend that they don’t know anything about
these fields, and try to come up with new algorithms to improve performance. Without the
background knowledge about different fields, we can use simple feature selection methods
(e.g. mutual information) to locate these informative fields automatically.

To make the results of this paper meaningful to general text classification problems, most
experiments in this paper only take Subject and Text for classification. Since most previ-
ous work like [McCallum 1998] and [Toutanova 2001] use all fields, this paper also show
results on all fields for comparison.

4.3 Results and Discussion

4.3.1 Accuracy

Table 2 and Figure 2 show classification accuracy of Naive Bayes, HS and GHS on fields
Subject and Text. GHS outperforms both Naive Bayes and HS when the size of training data
is small. The three algorithms achieve similar performance when the training set is large.
All results are the average of a 10-fold cross-validation. In each fold, training samples are
randomly picked from the original set, and all the rest documents are used as testing set.

Table 2: Classification accuracy using subject and text (The top row is the number of
training documents per group, the bottom row is the improvement of GHS over NB)

Method 5 10 20 40 80 100 200 400 600

NB 0.310 0.383 0.489 0.583 0.680 0.705 0.758 0.801 0.816

HS 0.259 0.364 0.492 0.593 0.689 0.712 0.763 0.801 0.816

GHS 0.303 0.430 0.556 0.641 0.711 0.730 0.772 0.805 0.817
Improve -2.2% 12.2% 13.8% 10.0% 4.6% 3.6% 1.8% 0.5% 0.1%

Table 3 compares the performance of Naive Bayes, HS and GHS on all fields. No signifi-
cant difference between the three algorithms is observed.

Table 3: Classification accuracy using all fields (The first row is the number of training
documents per group)

Method 5 10 20 40 80 100 200 400 600

NB 0.528 0.583 0.671 0.765 0.819 0.836 0.858 0.880 0.882

HS 0.403 0.589 0.681 0.771 0.823 0.836 0.854 0.877 0.880

GHS 0.424 0.624 0.732 0.790 0.821 0.841 0.855 0.877 0.881

Results in Table 3 are not very consistent with that report by [McCallum 1998] and
[Toutanova 2001]. In our results, the accuracy of Naive Bayes is much higher than that
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Figure 2: Accuracy of classification with varying size of training set

in those two papers, and the accuracy of HS is a little higher. As a result, the advantage of
HS over Naive Bayes is not very significant, at least in this particular corpus.

4.3.2 Mixture weights

Intuitively, when the size of training set increases, the accuracy of Naive Bayes estimation
increases. As we are more confident with θk, GHS should increase the “self weight” λj

j in
linear combination θj =

∑
k λk

j θk. Experimental results demonstrate this intuition, which
is shown in Figure 3 and Figure 4. However, due to the nature of James-Stein estimator,
the “self weights” will never equal to one.
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Figure 3: Self weights learned by GHS on varying size of training set
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Figure 4: Self weights learned by HS on varying size of training set

5 Conclusion

This paper proposes a new General Hierarchical Shrinkage model for text classification.
It releases the constraints on mixture weights in original Hierarchical Shrinkage model.
Empirical experiments on newsgroup data shows that GHS outperforms Naive Bayes and
HS when the training set is small, and achieves the same accuracy with Naive Bayes when
the training set is sufficiently large. We can compare these three methods with bias-variance
decomposition. Naive Bayes do not require estimating any extra weights, therefore it has
the highest bias, and lowest variance. On the other extreme, GHS contains a rich set of
tunable weights, which brings low bias as well as high variance. Finally, HS, as a special
case of GHS, stands between Naive Bayes and GHS.
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