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Abstract

While all modern speech recognition systems use Gaussian mixture mod-
els, there is no standard method to determine the number of mixture com-
ponents. Current choices for mixture component numbers are usually
arbitrary with little justification. In this paper we apply some common
model selection methods to determine the number of mixture compo-
nents. We show that they are ill-suited for the speech recognition task
because increasing test set data likelihood does not necessarily improve
speech recognition performance. We then present a model selection cri-
terion modified to better suit speech recognition, and its positive and neg-
ative effects on speech recognition performance.

1 Introduction

Modern speech recognition algorithms are filled with data-driven techniques that build
models to represent human speech. While specific implementations may differ in the al-
gorithms used, one commonality of all modern speech recognizers is the use of Gaussian
mixture models (GMMs) to represent senones, the atomic units of speech. For each time
interval, or frame, a feature vector is computed to represent the acoustic information, and
this is inputted into the GMMs to compute the probabilities of each senone. These probabil-
ities are then used by the search backend to determine the most likely sequence of sounds,
which determines the most likely sequence of words.

Although using GMMs is a standard method, there is no consensus on how to determine
the number of mixture components per senone. The most common methods are setting
the number of mixture components of a particular senone to an arbitrary constant, or a
fraction of instances of that senone in the training set. However, there is no statistical
justification for these methods, and neither of these methods take the complexity of the
senone acoustic distribution into account. Also, even though the GMMs are generated via
expectation maximization, almost no work has been done to cross-validate the results or
check for overfitting. While some work has been done to prune mixture components using
the Bayesian information criterion [1], these methods only consider the data that belongs
to a particular senone when creating the model, when the effects from other senones should
be considered. An attempt [2] has been made on trying to include all the data when training
the models, but it generates statistically unjustified models.

In this paper we introduce a method to generate GMMSs whose number of mixture compo-



nents are statistically justified, and which take into account effects from other senones. To
include information regarding other senones, we add a misclassification parameter so that
easily misclassified senones will have more components to make it more distinctive. We
also compare the results against common model selection methods, including those used in
previous work.

The paper is organized as follows: section 2 describes the model selection methods used
and section 3 reports the results from these methods. Section 4 introduces the new method
based on the insight derived from the results in section 3. Test results are presented in
section 5, and conclusions in section 6.

2 Model selection methods

To determine the number of components per GMM to best represent the true distribution
of the data, model selection (MS) techniques will be used. This will provide a method to
maximize the likelihood of the training data while attempting to avoid overfitting. Besides
using the n-fold cross-validation (CV) technique, where the data is is trained on (n-1) folds
and tested on the held out set, the information criterion techniques described below will
also be used.

One model selection technique is the Akaike Information Criterion (AIC)[3], which penal-
izes the model based on its complexity. It is defined as:

AIC(0) = —2log p(X|0) + 2k (1)

where 6 is the model, X is the input data, log p(X|0) is the log of the probability of X
given 6, and k is the number of parameters in the model . The model selected will have
the lowest AIC score. However, in cases where the number of input vectors, n, is small
relative to k, AIC tends to have a negatively-biased estimate of the difference between
the model and true distribution. To account for this, a corrected AIC (AICc)[4] has been
previously proposed, which is defined as:

AICc(0) = —2logp(X10) + 2k <n> (2)
n—k—1
When the number of samples and the complexity of the model are of the same order of
magnitude, the penalty term for AICc will be much larger than AIC, which corrects for the
negative bias. As the number of samples becomes much larger than the model complexity,
AICc will converge to AIC. Again the model that minimizes AICc will be chosen, and
AlICc tends to perform better than AIC when the number of samples is limited.

The final model selection method that will be used is the Bayes Information Criterion
(BIC)[5], defined as:
BIC(8) = —2logp(X10) + klog(n) 3)

The model that minimizes BIC will be selected.

3 Model selection results

The following experiments are performed using the Communicator corpora [6], which con-
sists of telephone calls for air travel planning. It contains 2165 senones, and a training set
of about 3,000,000 frames and test set of about 300,000 frames were used. The complete
Communicator training set is approximately 10 times larger, but due to time and resource
constraints only a subset is used. The input feature vector has 39 elements generated from
mel frequency cepstral coefficients [7] and its first and second time derivatives. To classify
each frame, existing GMMs trained using Sphinx-Train[8] on the entire Communicator



training set are used to force-align the waveform and the transcript to find the optimal se-
quence of senones. The speech recognizer we use for force-alignment and decoding is
Sphinx 3.0 [8]. To measure speech recognition performance, we use accuracy, which is

Number of reference words correctly decoded in hypothesis

A =100 - 4
cetracy Number of reference words @

and word error rate (WER), which is
WER — 100 - Number of substitutions + deletions + insertions in hypothesis' 5)

Number of reference words

Accuracy favors sentences with correctly decoded words, while WER is biased towards
sentences with less hypothesized words. WER and a comparison of the two metrics are
explained in more detail in the appendix. Increasing accuracy or decreasing WER corre-
sponds to better speech recognition performance.

GMMs are created by taking the all the frames classified to a particular senone and run-
ning it through Cluster [9], which has been modified to initialize the mixture components
randomly instead of deterministically. We arbitrarily restrict the maximum number of com-
ponents per GMM to 32 and diagonal covariance matrices for the Gaussians due to time
constraints. The maximum number of GMM components for senone ¢, N, is set to

(6)

N; = min <32, Number of fran;;s classified as z) .

To make sure the Gaussians were not ill-formed, we require at least one frame per Gaussian
dimension. For senones that appeared in less than 39 frames, we use the single component
Gaussian model generated by Sphinx-Train. Ideally, for each number of mixture compo-
nents we would like to train multiple GMMs to try to find the global optimum, but this
process is too time-consuming. Instead, a GMM for senone ¢ with N; mixture components
is first created, and then mixture components whose combination resulted in the smallest
change in data likelihood are merged to initialize the clustering algorithm to create a GMM
with INV; — 1 mixture components. This process is repeated until only one component re-
mained, and number of components for the GMM with the lowest information criterion
is selected. Since only Gaussians with diagonal covariance matrices are considered, the
number of parameters per mixture component was 79 (1 prior + 39 means + 39 variances).

To verify that the models trained using Cluster could be plugged into Sphinx, a 4-mixture
component GMM was trained per senone by Cluster and compared against the correspond-
ing model trained by Sphinx-Train. As seen in Table 1, in terms of both accuracy and WER
Cluster performed better than Sphinx on the training set, but worse of the test set. This is
expected because the Sphinx-Train model is trained on the complete Communicator train-
ing set while the Cluster model is trained on the reduced training set, so the Sphinx-Train
model should generalize better to the test set and the Cluster model do better just on the
data it was trained on. However, since the performance of the Cluster models is comparable
to Sphinx-Train, the Cluster models can be used in Sphinx.

Table 1: Results of 4-mixture component GMMs trained by Sphinx-Train and Cluster
Sphinx-Train  Cluster

Training Set Accuracy 81.9 82.5
Training Set WER 30.5 26.8
Test Set Accuracy 85.5 80.0

Test Set WER 27.3 33.8



Table 2: Results of models trained using different model selection methods
NoMS AIC AICc BIC 5-fold CV

Average Number of Components 15.68 14.09 496 5.62 13.47

Training Set Accuracy 96.7 96.6 937 946 96.0
Training Set WER 14.9 15.1 19.6 184 16.3
Test Set Accuracy 84.9 852 84.0 847 84.7
Test Set WER 224 222 248 239 23.8

Test Set Likelihood (Normalized) 1.00 1.03 0.987 0.991 1.02

Next we generated models using Cluster and applied the model selection methods presented
in section 2, and display the results in Table 2. For every row the best score is highlighted
in bold, and note that the test set data likelihood is normalized relative to the model with
before any model selection has applied.

We note these 5 interesting observations:

e As the average number of components decreases, speech recognition performance
on the training set also decreases, and speech recognition performance on the test
set also decreases except for AIC.

e Only AIC and CV increased the test set likelihood over the original model with no
model selection applied. There may not have been enough training data to fully
represent the complexity of some of the senones, causing AICc and BIC to be
overly aggressive in pruning the number of mixture components.

o Increased test set likelihood does not necessarily mean better speech recognition
performance. CV almost has the highest test set likelihood, but its speech recogni-
tion performance is closer to BIC which has the fourth highest test set likelihood.

e Model selection can be beneficial, for using AIC results in the model with the
highest accuracy and lowest WER. It also has the highest test data likelihood, but
only slightly decreases the average number of components.

o In the models trained using 5-fold CV, for every senone the number of mixture
components that maximized the data likelihood was the maximum number of mix-
ture components that could be trained. This number can be less than NV;, because
the training set is reduced by the size of the held-out fold. This effect will be
lessened if more folds of a smaller size were used to increase the training set size.
However, this would be too time-consuming because the 5-fold CV already takes
well over a week to run.

Although these results suggest that maximizing test set likelihood corresponds to better
speech recognition performance, the 5-fold CV results show there is a small difference. For
good speech recognition performance, what matters is not the test set likelihood, but rather
the difference in likelihood between the correctly decoded sentence and the most probable
incorrect sentence. For example, having the correct sentence and best incorrect sentence
likelihood of 0.02 and 0.01 is desirable because the correct sentence will be decoded due to
its higher likelihood. If the correct and incorrect sentence likelihoods are 0.5 and 0.7, while
the correct sentence likelihood may be higher than the previous example, the incorrect
sentence will be decoded making speech recognition performance worse.

The ideal model selection method would have the speech recognition performance of AIC
and a reduced number of mixture components similar to AICc or BIC. Since AIC tends to
overestimate the number of mixture components, it suggests that a model with a smaller av-
erage number of mixture components may be able to perform just as well. While AICc and



BIC are clearly too aggressive, with some modifications designed specifically for speech
recognition they may achieve speech recognition performance comparable to AIC while
still averaging much fewer mixture components.

4 Proposed model selection criterion

Since the results show that model selection can be beneficial, a model selection criterion
modified to better match speech recognition may produce a better model. Ideally the modi-
fied model selection criterion would directly optimize speech recognition performance, but
it is difficult to incorporate the highest likelihood of an incorrect sentence into the model
criterion. Instead we focus on a simpler problem, which is adjusting the penalty on com-
plexity based on the number of times a senone is misclassified. The senones that are often
misclassified need more resolution (i.e. mixture components) in order to be represented
more accurately and with higher probability, which increases the likelihood of the correct
sentence.

To find the number of times a senone is misclassified, we take all the training sentences
that had been incorrectly decoded, and compare its sequence of senones to the optimal
sequence of senones for the correct sentence. For the frames where the incorrect sentence’s
senone has a higher likelihood, the correct sentence’s senone gets a false negative, and the
incorrect sentence’s senone gets a false positive. We define the number of times senone 7 is
misclassified per instance, F;, as

_ #false negatives of ¢ + # false positives of
" # training frames that should be classified as i’

(7

The higher FE; is, the more mixture components are needed to represent senone 7. Includ-
ing the number of false negatives is obvious because with more mixture components the
likelihood of all instances of senone ¢ should increase. We also include the number of false
positives because with more mixture components senone ¢ should be misclassified less of-
ten. We normalize by the number of frames that should be classified as ¢ because we do not
want to be biased to senones that appear often.

We modify BIC to create a modified BIC (mBIC)
mBIC(0) = —2logp(X0) + klog(n) * A (8)

where A is the a function of E;. For senones that have large F;, A should be 0 in order to
lessen the penalty on complexity and increase the number of mixture components. Simi-
larly, for senones with small F;, A should be close to 1 because the original BIC worked
well. Thus, we generate the following equation for A:

Because F; can be greater than 1 when senone ¢ has many false positives, we need to add
the min term for A.

S Proposed model selection criterion results

To find the E; values, we used the model generated by Cluster with no model selection
applied and ran speech recognition on the 3,000,000 frame training set. 21% of the training
set sentences were incorrectly decoded, and 19% of the frames of the incorrectly decoded
sentences were misclassified, which yielded a total of 184,536 misclassified frames. As
seen in Figure 1, most of the misclassifications can be attributed to less than 10% of the
senones which are mostly related to senones representing noise, silence, or a variant of the
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Figure 1: Plot of % of total misclassifications versus % of senones

vowel a”. For the noise-related and silence-related senones with lots of misclassifications,
the maximum number of mixture components had already been used to represent them, so
the modified model selection criterion would not help.

After calculating F;, we then applied mBIC to the test set and compared it against AIC
and BIC in Table 3. Not only does mBIC improve upon BIC, it also has higher test set
accuracy than AIC while using less than half of the components. However, its speech
recognition performance is not conclusively better than AIC because its WER is higher.
Looking at the decoded sentences using AIC and mBIC shows that mBIC often decodes
nonsense words where AIC decodes noise, which causes the WER to increase but leave the
accuracy unchanged because noise is not considered a reference word. mBIC probably still
underestimates the number of parameters needed to represent noise, leading to its higher
WER. mBIC has the smallest test set data likelihood of all the model selection methods
used, which further highlights that increasing test set data likelihood does not necessarily
improve speech recognition performance.

Table 3: Results of models trained using mBIC compared against AIC and BIC
mBIC AIC BIC

Average Number of Components 6.28 14.09 5.62

Training Set Accuracy 94.9 96.6 94.6
Training Set WER 17.8 15.1 18.4
Test Set Accuracy 85.3 85.2 84.7
Test Set WER 233 222 239

Test Set Likelihood (Normalized) 0.981 1.03  0.991

6 Conclusions

In this paper we have shown that standard model selection techniques that improve test
set data likelihood do not necessarily improve speech recognition performance. We also
introduce a modified version of BIC designed specifically for speech recognition that can
create GMMs with 60% fewer components than the model with no model selection applied
while achieving higher accuracy. However, it is not clearly better since it performs worse



when using WER as the metric. The model generated with mBIC also is quite comparable
to the 4-mixture component GMM model trained by Sphinx-Train. With only 1/10 the
training data, it achieves a lower WER and similar accuracy without increasing the average
number of components by too much.

For future work, there will not be no time constraint, so we would like to address the
limitations of the compromises made due to a lack of time. First, we would like to train the
models using the entire training set, which will also enable us to make better comparisons
with the models trained by Sphinx-Train. We would like to not restrict the maximum
number of mixture components per GMM to 32, because the results also show that some
senones need more components to fully express its complexity. We could also try other
model selection techniques such as the Dirichlet process and see how it performs, and see
if we can gain more insight to help us better modify mBIC to perform even better.

Appendix

Given a reference (correct) sentence and a hypothesis (decoded) sentence, the word error
rate (WER) is defined as

Number of substitutions + deletions + insertions in hypothesis

WER = 100
¥ Number of reference words

A deletion occurs when a word in the reference sentence does not exist in the hypothesis
sentence. A substitution occurs when a word in the reference is decoded into a different
word in the hypothesis. An insertion occurs when a word that does not appear in the ref-
erence appears in the hypothesis. While there are many different ways to categorize errors
into deletions, substitutions, and insertions, the WER is calculated using the categorization
that yields the smallest amount of deletions, substitutions, and insertions.

For example, consider the following hypothesis and reference:

REF: She is with me
HYP: He is me too

There are three errors, which can categorized as 1 substitution (he/she), 1 deletion (with),
and 1 insertion (too). Alternatively, we can categorize them as 3 substitutions (he/she,
me/with, too/me). Either way, there are three errors so the WER is 75%. Any categorization
of errors that has more than 3 errors is incorrect.

Accuracy favors hypotheses with correctly decoded words, while WER is biased towards
sentences with less incorrectly hypothesized words. Both metrics are commonly used, and
both have their own merits. For example, consider these two possible hypotheses:

REF: Book me that flight
HYP1: Please book that flight okay
HYP2: Me very flight

Looking at the two sentences, it seems that hypothesis 1 is much better because it conveys
the meaning of the reference sentence, while hypothesis 2 looks like nonsense. If we use
accuracy, hypothesis 1 does score higher, (75% versus 50%), but it does worse in WER
(75% versus 50%)! While in this example accuracy is the preferred measure, here is an
example where WER does better:



REF: Book me that flight
HYPI: Book that flight
HYP2: Do not book me that flight

Hypothesis 2 is obviously worse since it has the opposite meaning of the reference. How-
ever, using accuracy hypothesis 2 has 100% accuracy and is better then hypothesis 1 (75%)!
WER will choose the preferred hypothesis 1, whose 25% WER is lower than hypothesis
2’s 50%.
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