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Abstract

A problem faced in major metropolitan areas, is the search for parking
space. In this paper, we proposed a novel way for automatic parking
lots detection. In our approach, we first extract features by generating
detection patchs and building Gaussian ground model from input video
frames. Then this model is used to train an eight-calss multi-SVM classi-
fier. Finally, the classfication is optimized globally via applying Markov
Random Field.

1 Introduction

In recent years, parking has become a serious problem under the increasing of the private
vehicles. Looking for parking space always wastes travelling time. For the driver’s conve-
nience, public parking lots should be responsible to inform the availability and location of
parking space. However, maintaining such kind of parking space system manually needs
lots of human resource. Therefore, unsupervised parking lots detection has been currently
employed in many systems for counting the number of parking space, identifying the loca-
tion, monitoring the changes of space status over the time.

Recent years, many researches have been done on improving parking lots detection sys-
tems. Some approaches use visual surveillance, which requires real-time interpretation of
image sequences in order to automate the detection of parking spaces [1]. Some other ap-
proaches keeps tracking and recording the movement of vehicles in order to find the empty
parking space [2, 3]. Nevertheless, these real-time detection methods require high com-
putation and large storage. In this paper, we present a novel method via using only a few
frames which are captured by a single camera for for unsupervised parking lots space de-
tection. Because it is impossible to set the camera perpendicular to the parking lots, it is
challenging for space detection under the influence of light variety, vehicles’ shadow and
occlusion. To obtain high detection accuracy under these critical conditions, we train nd
recognized from the video frame by machine learning methods, instead of segment them
directly to find out the available space. Our goal is to build a highly accurate automatic
detection system which is stable and economic for industry application.

2 System Overview

The outline of our proposed parking lots space detection system is shown in Fig 1. this
system consists four parts: Preprocessing, ground model feature extraction, multi-class
SVM recognition and MRF based verification. In the first section, we rotate the raw input
frames into the uniform axis and segment them into small patches which include 3 parking



Figure 1: System Overview

spaces each. Then, the probability of ground color of these patches are extracted as the
input features, via applying a ground model. Next, Multi-class SVM is trained to analyze
and classify the patches into 8 classes (status). Finally, Markov Random Field (MRF) are
builded to solve the latent conflicts between two neighboring patches. In this step, we use
the posterior probability generated by the SVM to improve the accuracy.

3 Preprocessing

Figure 2: Preprocess the input frame and generate detecting patches

Given an input video frame such as Fig 2, we focus on the parking regions. They can
be easily obtained as we know the 3D points of real scene and the intrinsic and extrinsic
parameters of camera. Intuitively, one may choose a whole row or a single parking space as
a detection patch. However, the influence of light variety, vehicles’ shadow and occlusion
is accumulated in rows and cannot be attenuated if single space is chosen for detection.
Thus, 3 parking spaces are used as a detection patch, which has two spaces in common
with neighbor ones. After rotation and interpolation (Fig. 2), the original patches have
been normalized into rectangular ones. Additionally, in the training process, we manually
classify them into 8 (23) space status when label empty space with 0 and occupied one with
1.



4 Feature Extraction

The aim of Feature extraction sections is to obtain the probability which indicate the com-
parability between the predetermined ground color and the color of a certain pixel on the
patches. Firstly, a vehicles color model is build up, which follows a similar way to build a
skin color model. However, it is impossible to cluster the vehicles color simply into a color
class as what happens in skin color model, because the vehicles’s color various a lot in a
large range. Therefore, a gaussian ground color model is trained in our approach, because
of its stableness in the color space and little variance in different lighting situations. The
probability of ground color in pixelx is defined as:

p(x) =
1

2π
√|Σg|

exp(−dg(x)) (1)

dg(x) =
1
2
(x−mg)Σ−1

g (x−mg)t (2)

wheremg is the mean of ground color andΣg is the variance of color ground.

Three scanning lines are used to get the values of pixels from left to right. We computed
the probability of every pixel by our ground color model. For a single patch, because there
are 75 pixels along each scanning line, 215 (75 × 3sacnline) features are extracted in
one sample. Nevertheless, it’s not necessary to use all the features, because unimportant
features can be dismissed to decrease the training complexity. Thus, Principle Component
Analysise (PCA) is applied to extract the critical features. After this demension decreasing,
50 critical features are picked out for further training, which contain over 99% energy of
the complete feature set.

5 Recognition

After feature extraction, SVM(Support Vector Machine), which is a powerful tool for clas-
sification developed by Vapnik, can be trained quickly. Binary (dual-class) classifier are
popular in practical application, which maps vectors with appropriate kernel function into
high-dimension of the feature space and satisfy the linearly separable constraint:

min|wT xi + b| = 1, i = 1, . . . , N (3)

Unlike the classical SVM which use Signum function and has binary output (+1 or -1), we
need to know the posterior probability of a single sample to be labelled as +1 or -1. In the
general binary classification problem, the probability distribution fory can be define as:

p(yi = ±1|xi, w) =
1

1 + exp(−ηf(xi))
(4)

f(x) =
N∑

i=1

αiyiK(x, xi) (5)

whereαi denotes the Lagrange multipliers,{(xi, yi)|xi ∈ R, yi = ±1, i = 1, . . . , N}
denotes a set of training samples,K(x, xi) is the kernel function andη = 1/||w|| > 0
is the distance between the hyperplane(w, b) and the Support vectors, the closest of the
training points. Thus, the binary posterior probability distribution can be written as:

p(yi = ±1|xi, w) =
1

1 + exp(−1/||w||f(xi))
(6)

The SVM classifier, as introduced above, is a binary classifier, while our parking lots space
classification is a multi-class problem, which will identify the detection patches into eight



parking status. Hence, we adapt the general binary SVM classifier by using one-against-
one strategy which takes all possible two-class combinations. Therefore,n(n−1)/2 SVMs
are trained and each SVM classifier separates a pair of classes. Here, n is the number of
status, which is 8 in our case.

In our approach, SVM with RBF(Radial Basis Function) kernels is adopted to be the com-
ponent of the classifier (in Equation (7)).

Ri(P ) = exp[−‖P − Ci‖2
σ2

i

] (7)

After trained by 28 (8× (8− 1)/2) binary classifiers, the probability that a set of samples
belong to theith class is shown in Equation (8):

p(yi|x) =
1

2− n +
∑8

j=1,i 6=j
1

pij(yi|x)

, i = 1, . . . , 8 (8)

wherepij(yi|xi) is obtained by Equation (6). Knowing these probabilities, we can say a
sample is in theith status ifp(yi|x) = max

j=1,...,n
p(yj |x).

6 Verification and Conflict Correction

Figure 3: Conflict between two
neighboring patches

Figure 4: Markov Random Field based Verification

As any other Machine Learning algorithms, SVM cannot guarantee 100 percents accuracy
in classification. In our parking lots detection, because the neighboring patches have 2
shared parking spaces, confliction may occur when one or both of the two patches are
classified into wrong status. For example. in Fig. 3, we have the results of neighboring
patches labelled as 001 and 110, or 110 and 010. To correct these conflictions, Markov
Random Field (MRF) is applied to correct the conflicts and optimize the results.

6.1 Markov Random Field Model

As shown in Fig. 4, the status labelS of each patch is independent and identically dis-
tributed when the posterior probabilityX of this patch is given. This can be shwon as



p(Si = k|Xi)⊥p(Si+1 = k|Xi+1). So we can maximize the likeliy hood function:

p(S|X) = arg max p(Sn = i, Sn+1 = j|Xn, Xn+1) (9)

∝ arg max p(Xn, Xn+1|Sn = i, Sn+1 = j) (10)

= arg max p(Xn|Sn)p(Xn+1|Sn+1)p(Sn+1, Sn) (11)

log p(S|X) = arg max(log p(Xn|Sn) + log p(Xn+1|Sn+1) + log p(Sn+1, Sn)) (12)

In the our MRF framework, we define a node labelling problem as assigning to every node
n in one parking row a label(see Fig 2(B)), which is written asSn. The energy functionE,
which can be viewed as the log likelihoodlog p(S|X), is composed of a data energyEd and
smoothness energyEs. The data energy is simply the sum of a set of per-node data costs
dn(S), which is the negative log SVM posterior probability result:− log p(Xn|Sn), that is
Ed =

∑
n dn(Sn). The smoothness energy, which is also called penalty value, is defined

as the sum of spatially varying horizontal neighboring penalty cost,Vn,n+1(Sn, Sn+1), that
is Es =

∑
n Vn,n+1(Sn, Sn+1). Therefore, in order to solve our problem which has been

changed into the energy minimization and global optimization, we should to train and esti-
mate the appropriate penalty cost.

6.2 Penalty Cost Estimation

Since there are 2 overlapping parking spaces between two neighboring patches, we basi-
cally have 3 kinds of relationship between them.

• No conflict eg. the SVM results of two neighboring patches are (100 & 000),(101
& 011). . .

• One conflict eg. the SVM results of two neighboring patches are (000 &
100),(111 & 011). . .

• Two conflict eg. the SVM results of two neighboring patches are (110 &
010),(001 & 101). . .

Therefore, based on the neighborhood relation on the set of nodes, we roughly define the
penalty cost as:

Vn,n+1(Sn, Sn+1) =
{ − log p(Sn, Sn+1) = 0 if.n = abc, n + 1 = bcd, a, b, c, d ∈ [0, 1]
− log p(Sn, Sn+1) = C elsewise, C is aconstant

(13)
However, our experiment shown that the penalty costs, which are although constant num-
bers, are different in the conditions of classifying a empty parking space to be 1 and la-
belling a occupied one as 0. Thus, to minimize the total energy, the penalty cost which
solves the conflict can be computed by:

V (Sn, Sn+1) = (dn(Sn = i′)− dn(Sn = i)) + (dn+1(Sn+1 = j)− dn+1(Sn+1 = j′))
(14)

where we assumeSn = i, Sn+1 = j are the results after SVM.Sn = i′, Sn+1 = j′ are
the true label known from the ground truth. Because these pre-computed penalty costs on
different kinds of neighboring patches follows normal distribution, we trained 64 (8 × 8)
gaussian models for every situations. Hence, the estimated penalty values (Table. 1) are
the means of these gaussian models. Using this penalty matrix and MRF framework, we
can easily solve the conflict and improve our recognition accuracy.



000 001 010 011 100 101 110 111
000 0.00 1.18 1.32 2.10 0.00 1.31 1.41 2.22
001 0.00 1.21 1.28 1.90 0.00 1.25 1.32 1.97
010 1.36 0.00 1.87 1.17 1.02 0.00 1.88 1.52
011 1.28 0.00 1.98 1.22 0.99 0.00 1.95 1.61
100 1.57 2.13 0.00 1.31 1.13 2.05 0.00 1.32
101 1.56 2.05 0.00 1.27 1.20 1.93 0.00 1.44
110 1.92 1.43 1.37 0.00 2.21 1.42 1.28 0.00
111 2.03 1.52 1.34 0.00 2.11 1.47 1.26 0.00

Table 1: The matrix of penalty values on all the situations

7 Experiments

7.1 Data Acquisition

We captured the video frames from the real scene. Firstly, in order to build a model that
is flexible enough to cover most of the variation of ground color, we have collected more
than 200 ground patches in different light environments for training. Then from 500 frames
which were captured from variant time slot, we generated and selected 2400 patches (300
for each status)as training data. Finally, using the trained Gaussian ground model and 8
class-SVMs, we evaluated the performances of various kernel functions of SVM. Moreover,
we also compare the results with and without using MRF conflict correction, to evaluate
the performance of MRF.

7.2 Features Preprocessing

Figure 5: Profiles on 8 patch status

The gaussian ground color model is used to extract the features from patches. The features
are the profile constructed by the continues probabilities of ground color in pixels. Fig 5
shows these profiles in 8 status. Obviously, the empty spaces always have a higher proba-
bility than the occupied ones, because their color are closer to ground. Then, PCA is used
to reduce the feature dimensions. The experiments demonstrate that first 50 eigen-vectors
contribute over 99% information (99.0123%) and we project all the features to these 50
principle components. Fig 6 sketches the projection on the first 3 principle components,
which shows our features are basically cluster into small regions and good for classification.



Figure 6: Features project on the first 3 principle components

7.3 Classification and Comparison

After obtaining the features, we classify our patches using Multi-class SVM. Using the
kernel functions of linear, polynomial and gaussian radius basis function separately, Fig
7(Classification accuracy) and Fig 8(Conflict rate) demonstrate the comparisons among
them. The x-axis of these plots shows the number of training samples. Note that we use
separate patches of 8 parking status in the training processing, that x-axis just denote the
number of patches for the training. However, in the test process, the input data are the
frames of the whole parking lots. Therefore, the y-axis of Fig 7 denotes the classification
accuracy of the frame test while that of Fig 8 denotes the average conflict rate of neighbor-
ing patches in the frame test(in our case, there are 34 patches in a frame, hence, we have
total 29 potential conflicts between two neighboring patches) .

Figure 7: Comparison of The Classification
Accuracy in Different Kernel Function of
SVM

Figure 8: Comparison of The Average Con-
flict Rate in Different Kernel Function of
SVM

From this two figures, it can be pointed out that the best kernel function for our case is
the Gaussian Radius Basis Function(RBF). The classification accuracy is increasing when
more samples are used for training. Thus, less conflicts will be occurred. However, it is
obvious from the figure that the best result for SVM is 83.57% and we still have at least
7.32% average conflict rate. To solve this problem, Markov Random Field(MRF) is used
for reducing conflict. Fig 9 and Fig 10 shows the result after MRF. Obviously,MRF pro-
cess improve the accuracy significantly (increase around 10% from purly SVM result).
Also, average conflict rate is reduced sharply to 2.57% from 7.32% of purely SVM. This
improvement can be attributed to the fact that the posterior probabilities of true labels be-



tween two neighboring patches are always close to those of pervious false labels predicted
by the SVM, which are easily corrected by the MRF.

Figure 9: Comparison of The Classification
Accuracy before and after MRF verification

Figure 10: Comparison of The Average Con-
flict Rate before and after MRF verification

8 Conclusion

In this paper, we propose a system for unsupervised parking lots space detection. Com-
paring with other pervious methods, we just use one camera and take a few frames over
seconds. Thus, the workload and computation complexity are much lower than others.
In addition, in order to avoid the high hardware requirement for realtime car segmenta-
tion, Gaussian Ground Model are presented to obtain the probabilities of ground color.
Then, We use 3 parking space, instead of one space or the whole row space, to compose
a patch for Multi-class SVM classification. The posterior probabilities which are obtained
by SVM classifications are further optimized by applying Markov Random Field to solve
the potential conflict between two neighboring patches. This reduces the error rate of SVM
classification and improve the recognition accuracy. The experiments results show that our
approach is rather robust with high precision.
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