
Using HMMs to boost accuracy in optical
character recognition

Prasanna Velagapudi
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
pkv@cs.cmu.edu

Abstract

One of the current trends in the �eld of optical character recognition
(OCR) is the combination of multiple classi�ers to produce more robust
recognition. In this paper, a kNN classi�er, a multi-layer perceptron, and
a support vector machine with a radial basis function kernel are tested on
a pre-segmented word-based OCR task with and without Viterbi error-
correction. I discuss the effects of error-correction on the classi�cation
accuracy of each method.

1 Introduction

The �eld of optical character recognition (OCR) has progressed signi�cantly since machine
learning methods were �rst applied to it almost two decades ago, with the introduction of
numerous novel techniques that have reduced computational cost and improved perfor-
mance. A recent summary of the state of the art subdivides the modern methods of solving
segmentation-based OCR�in which data is segmented into characters independently of
classi�cation�into three categories: statistical methods, arti�cial neural networks, and
kernel methods (primarily support vector machines) [7].

1.1 Statistical Methods in OCR

Statistical classi�ers are derived from Bayes' rule, and can be categorized into parametric
and non-parametric methods. Non-parametric methods, like k-Nearest-Neighbor (kNN),
store and compare all training samples, making them unusable in the general OCR case.
However, there are several popular parametric classi�ers for OCR, including quadratic dis-
criminant functions (QDF), linear discriminant functions (LDF), and regularized discrimi-
nant analysis (RDA) [7].

1.2 ANNs in OCR

Optical character recognition was historically one of the �rst �real world� applications of
arti�cial neural networks (ANNs). LeCun et al. �rst proposed a solution using convo-
lutional neural networks in 1989 [5]. Almost two decades later, the LeNet-5 variant is



widely used, and convolutional neural networks are still considered one of the most suc-
cessful techniques for OCR. However, recent comparisons of techniques for OCR have
demonstrated that competitive results should also be obtainable using the much simpler
multi-layer perceptron network architecture [7].

1.3 SVMs in OCR

In recent years, support vector machines (SVMs) have also become popular in the �eld
of OCR. Although they have higher computational complexity and memory requirements
than ANNs, they have also been shown to have higher classi�cation accuracy over several
handwriting recognition databases, speci�cally in conjunction with a radial-basis function
kernel [6].

1.4 Viterbi error-correction

Regardless of the underlying classi�er, in the typical cases of single character classi�ca-
tion, errors can be introduced by the physical ambiguities of certain characters [2]. Certain
handwritten sets of characters such as (�0�, �O�, �o�), (�l�, �i�, �1�), and (�Z�,�z�,�2�)
share many optical features, confusing most classi�ers. It is therefore bene�cial to apply
word-level constraints on the occurrence of characters in a sequence to ambiguous charac-
ters. Hidden Markov models are one well-studied method of discovering and applying this
type of sequential pattern recognition. Numerous bodies of work deal with the integration
of HMMs into both ANNs [2] and SVMs [1] for complex tasks such as segmentation. How-
ever, there is considerably less work dealing with the much simpler task of using HMMs to
simply boost classi�cation accuracy on pre-segmented OCR data.
If we model words as Markov chains of characters, then there exists a well-known method
for �nding the most likely sequence of characters given some observed sequence of char-
acters and a knowledge of the transitional relationships between characters. This method
is the Viterbi algorithm. This algorithm will replace predicted letters with the maximum
likelihood estimate for their position given the prediction. If trained properly, correct se-
quences of letters will remain unchanged, while ambiguous cases can be resolved using the
surrounding character sequence as context for the ambiguous letter.
By testing this straightforward and modular error-correction scheme for expressing word-
level constraints, we can answer the following questions:

• Can Viterbi error-correction improve OCR accuracy signi�cantly?
• Might certain classi�ers be improved more by Viterbi error-correction than others?
• Is it possible to match the performance of more computationally intensive clas-

si�ers (like SVMs) using simpler algorithms (such as ANNs) assisted by Viterbi
error-correction?

2 Method

2.1 Classi�cation steps

The basic methodology of the error-corrected classi�cation is as follows:

1. The base classi�er is trained on a training data set.

2. An HMM is modeled on the transition probabilities of the training data set and
the emission probabilities of the base classi�er, as seen in Figure 1.



Figure 1: HMM graphical model of word.

3. The base classi�er makes predictions on the test data set.

4. The Viterbi algorithm is run on the predictions made by the base classi�er, using
the HMM built in the previous step to create the maximum likelihood letter
sequence for each word.

2.1.1 Training

Due to the small size of the training set, during 10-fold cross-validation certain words
would not appear at all in the training set. With so few words to begin with, this skewed
the transitional probabilities of the HMM quite considerably. Thus, the HMM's transition
probabilities were estimated using the entire data set. It should be noted that the infor-
mation encoded in the transition probabilities only re�ected the occurrence of words and
their relative probabilities, both of which would be very reasonable a-priori knowledge in
limited-vocabulary OCR cases. Thus, the estimator for transition probabilities is as follows:

Aij = # of transitions from letter i to letter j (1)
λA = regularization constant (2)

aij =
Aij + λA∑
j′ Aij′ + λA

(3)

In addition, multinomial distributions were calculated for the probabilities of starting or
ending a sequence on a given letter. Because all sequences were of �nite length, an end
state with transition probabilities from each letter could be used to improve accuracy. The
estimators for these were as follows:

Πstart
i = # of words that start with letter i (4)

λstart = regularization constant (5)

πstart
i =

Πstart
i + λstart

∑
i′ Π

start
i′ + λstart

(6)

Πend
i = # of words that end with letter i (7)

λend = regularization constant (8)

πend
i =

Πend
i + λend

∑
i′ Π

end
i′ + λend

(9)



The data was then divided into 10 folds, each containing sets of whole words. Using
standard cross-validation techniques, each classi�er was trained using the data outside the
fold. The predictions made by the classi�er on the training data were conditioned by letter,
and used to calculate the emission probabilities of the HMM. This yields the following
expression for the estimator of emission probabilities:

Bik = # of times letter i is classi�ed as letter k (10)
λB = regularization constant (11)

bij =
Bik + λB∑
k′ Bik′ + λB

(12)

2.1.2 Classi�cation

Each classi�er was then tested on the data included in the fold, and the errors were recorded.
The predictions of the classi�er were also recorded for processing through the Viterbi al-
gorithm.

2.1.3 Error-correction

The predictions of the classi�er were separated into words, and the Viterbi algorithm was
run on each word (modeled as a sequence of letters). The output of the algorithm was a
new sequence of letters described as the �error-corrected� prediction.

2.2 Classi�ers

Several classi�ers were selected to test the hypothesis that Viterbi error-correction could be
used to improve the accuracy of segmentation-based OCR. A kNN classi�er was selected as
an of�ine method of statistical classi�cation. A multi-layer perceptron (MLP) was selected
to represent ANN classi�cation. Lastly, a radial basis function kernel SVM was selected as
the best representative kernel-based method.

2.2.1 kNN

k-nearest-neighbor classi�cation is a common baseline in many OCR studies. As such, it
is included here as a method of baselining the errors generated on this dataset. A generic
kNN classi�er was implemented in Matlab using a Euclidean distance function. For the
purposes of simplicity and comparability, testing was done using 1-NN.

2.2.2 MLP

Using the Matlab Neural Network toolbox, a 2-layer perceptron with 50 hidden nodes and
26 output nodes was constructed. The index of the maximum valued output node was taken
to be the output of the network during testing. This model was found through empirical
testing to perform the best on the dataset of all attempted MLP designs, although it did not
approach the accuracies reported in other literature [7].

2.2.3 SVM+RBF

Using a freely available SVM toolkit for Matlab [3], it was possible to relatively trivially
implement a multi-class Vapnik support vector machine with a standard radial basis func-
tion kernel. The method used for multi-classing was one-against-one, as it has been shown
to perform similarly to 1-of-K (one-against-the-rest) methods, but requires less computa-
tion [4].



Word: nworkable

Figure 2: Word sample from dataset: �[U]nworkable�.

Classi�er Type Uncorrected error Viterbi-corrected error Reduction in Error
1NN 0.1767 0.1557 0.021
MLP 0.5868 0.4918 0.095

SVM+RBF 0.1614 0.1124 0.049

Table 1: 10-fold cross-validation error rates of classi�ers.

2.2.4 Simulated classi�er

In order to do more detailed analysis of the Viterbi algorithm's performance, a simulated
classi�er was created with a tunable accuracy. For each classi�cation, the simulated clas-
si�er randomly selected between the correct choice and a uniform distribution of incorrect
choices using a speci�able Bernoulli distribution.

3 Experiment

The dataset used for this experiment is a subset of the dataset used by Robert Kassel at
MIT Spoken Language Systems Group for his 1995 PhD thesis. It contains pre-segmented
image data of a small vocabulary of handwritten English words. Benjamin Taskar at UC
Berkeley selected a �clean� subset of the words, removed capitalized leading characters,
and rasterized and normalized the images of each letter, forming a 6877 word, 52152 char-
acter, all-lowercase dataset [8]. Figure 2 is one example of the processed data.
Each classi�er was tested using 10-fold cross-validation to calculate overall error rates for
each method with and without Viterbi error-correction.
The error-correction proved to be effective in all cases, as shown in Table 1. The SVM
and MLP seemed to bene�t the most from the correction, even at vastly differing baseline
accuracies. The 1-NN, on the other hand, improved much less, suggesting that the type of
classi�er used signi�cantly affected the ability of the Viterbi algorithm to correct mistakes.
In order to better understand the effects of classi�er accuracy on the error-correction, the
simulated classi�er was tested over a range of accuracies. Figure 3 shows the effect of the
classi�er's base accuracy on the Viterbi correction, normalized by the classi�er's base error
rate. Interestingly, the proportional reduction in error does not degrade at higher accuracies,
implying that the error-correction is bene�cial even for very accurate classi�ers, although
it may be less dramatic.
While this variability may account for the difference in reduction of error between the
MLP and SVM, it still does not at all account for the improved performance of the error-
correction on these two over the 1-NN and simulated classi�ers. The data seems to suggest
that the speci�c errors generated by the former two can be exploited in the emission prob-
abilities of an HMM to improve the performance of the Viterbi algorithm.



Figure 3: Error reduction divided by error of simulated classi�er.

4 Conclusion

I have demonstrated that for limited vocabulary cases, Viterbi error correction is a very
useful means of boosting accuracy. Also, preliminary results suggest that the nature of the
errors produced by MLP and SVM classi�ers are particularly well-suited to Viterbi error-
correction, allowing improvements of almost 10% in the former case. However, due to the
poor performance overall of the MLP on this dataset, it is unclear whether this might allow a
well-trained corrected MLP to consistently match or outperform a well-trained uncorrected
SVM.

References
[1] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. On-line handwriting recog-

nition with support vector machines�a kernel approach. In Proc. of the 8th IWFHR,
pages 49�54, 2002.

[2] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A nn/hmm hybrid for on-line
handwriting recognition. Neural Computation, 7(6):1289�1303, November 1995.

[3] G. C. Cawley. MATLAB support vector machine toolbox (v0.55β)
[http://theoval.sys.uea.ac.uk/�gcc/svm/toolbox]. University
of East Anglia, School of Information Systems, Norwich, Norfolk, U.K., 2000.

[4] C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines,
2001.

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Handwritten digit recognition with a back-propagation network. In Advances
in Neural Information Processing Systems 2 (NIPS*89), Denver, CO, 1990. Morgan
Kaufman.

[6] C.L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten digit recognition:
Benchmarking of state-of-the-art techniques. 36(10):2271�2285, October 2003.

[7] Fujisawa H. Liu, C.L. Classi�cation and learning for character recognition: Compari-
son of methods and remaining problems in neural networks and learning in document
analysis and recognition. pages 1�7, August 2005.

[8] B. Taskar. OCR dataset [http://ai.stanford.edu/ btaskar/ocr/]. Stan-
ford University, Arti�cial Intelligence Lab, Stanford, CA, 2003.


