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1 Introduction

MicroRNA (miRNA) is a small non-coding RNA molecule of about21 nucleotides that reg-
ulates gene expression at the post-transcriptional level.The miRNA silences target genes
by making complementary base pairs with the gene’s messenger RNAs, leading to their
degradation or translational repression. The biogenesis and function of miRNAs have been
reviewed in [1, 6].

MicroRNAs were recently discovered, in 1993, when it was first reported that a small RNA
in Caenorhabditis elegans, called lin-4, was responsible for regulating the expression of
the lin-14 gene through direct interaction with its messenger RNA [8, 13]. A few years
later, Andrew Z. Fire and Craig C. Mello published a paper inNature[3] describing how
tiny snippets of RNA can destroy the gene’s messenger RNA before it can produce a pro-
tein. Scientists then started to explore this mechanism, namedRNA interference(RNAi), to
silence genes of therapeutic interests. RNAi has become oneof the most important recent
developments in molecular biology, as exemplified by the fact that Fire and Mello were
awarded this year Nobel Prize in Medicine [15] for their discovery.

The contribution of computational biology to miRNA research are threefold [2]: (1) iden-
tification of new microRNA genes in genomes; (2) prediction of microRNA gene targets;
and (3) computational design of microRNAs to target therapeutic genes. In this report, we
consider only the first problem, i.e., the problem of automatic recognition of microRNA
genes in genomic sequences.

2 Problem Definition

A microRNA precursor (pre-miRNA)is a RNA sequence of about 100 nucleotides that
contains the actual microRNA (of∼ 21 nt, also calledmature miRNA). The mature miRNA
is cleaved from its precursor by specific enzymes. The miRNA recognition problem is
usually defined over pre-miRNAs because they encode more information (to be exploited
by recognition algorithms) than the smaller mature miRNA. In particular, the pre-miRNAs
have a typical hairpin loop secondary structure as shown in Fig. 1.

Here we define the recognition problem as follows. Given a RNAsequence of∼ 100 nt,
determine whether it is a miRNA or not. The problem is more interesting (and harder!) at
those cases where the input RNA sequence folds like a typicalhairpin loop of miRNA, so
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Figure 1: Secondary structure ofC. eleganslin-4 miRNA folded by RNAfold [5].

the algorithm should be able to discriminate between true miRNA hairpin loops from all
other hairpin loops.

3 Existing Methods

The simplest way to identify new miRNAs is through sequence homology searches us-
ing programs, such as BLAST. However, because miRNAs often have non-conserved se-
quences, this approach is limited to finding only a small fraction of miRNAs with close
homologs. Other approaches explore the fact that RNA secondary structures tends to be
more conserved than their sequences. Such approaches rely on programs, like RNAfold
[5], to predict the RNA secondary structure. The predicted structures are then used to iden-
tify potential miRNA candidates that fold like a typical miRNA loop. We are particularly
interested in machine learning approaches applied to this problem.

Currently, there are three machine learning approaches applied to miRNA identification
found in the literature, namely, support vector machines (SVM), Naive Bayes and hidden
Markov model (HMM). In the SVM [10] and Naive Bayes [14] approaches, a feature vec-
tor is extracted from a combination of sequence and (predicted) structure. Some features
include the composition of bases in specific positions, the number and size of bulges, base
pairing mismatches, and so forth. The HMM approach [12] has atopology of hidden states
designed to learn the base-pairing compositions along the miRNA hairpin-loop. It is dif-
ficult to say which approach is the most effective; since theywere trained using different
datasets, their reported results are not directly comparable.



4 New Proposed Method

Since the existing approaches rely on predicted structures, we reason that their accuracy are
somehow limited by the accuracy of RNA secondary structure prediction programs. While
the overall hairpin loop structure is predicted well, fine details like the size of loops and
bulges are not correctly predicted, resulting in noisy feature vectors. In [7], it was reported
that 8 structures of miRNAs out of 10 were incorrectly predicted. Therefore, we propose
a new machine learning approach that accounts for the secondary structure in an implicit
way without relying on a specific predicted structure, through the use of a kernel function
that computes a similarity measure for two RNA sequences.

4.1 New Kernel Function

We have designed a new kernel function that computes a similarity measure for two RNA
sequences based on their patterns of base-pairing formation. We shall describe the kernel
function in two steps: (1) computation of abase-pair profilefor each RNA sequence, and
(2) alignmnent of the two base-pair profiles.

The base-pair profile of a RNA molecule should capture its pattern of base-pairing forma-
tion. Rather than relying on a single predicted structure, we use the McCaskill algorithm
[11] to compute base-pair probabilities based on thermodynamics principles. The result is
a matrixPr[i, j] where each entry stores the probability of basei forming a pair with base
j. The base-pair profile is aNx3 matrixPROFILE (whereN is the sequence length) that
gives you for each basei its probability of forming base pairing upstream (US) , down-
stream (DS) and not forming base pairing (NP ). These are readily computed fromPr[i, j]
as follows:

PROFILE[i, UP ] =
∑

j>i

Pr[i, j] (1)

PROFILE[i,DS] =
∑

j<i

Pr[i, j] (2)

PROFILE[i,NP ] = 1 − PROFILE[i, UP ] − PROFILE[i,DS]; (3)

The second step is the global alignment of twoPROFILE’s. The alignment is computed
using the Needlman-Wunch algorithm with a modified scoring system. We allow gaps with
zero cost and we score the alignment of two bases by the inner product of their probability
profile vectors. See the recurrence equation below.

Score[u,v]= max

{

Score[u-1,v] /* zero gap cost */
Score[u,v-1] /* zero gap cost */
Score[u-1,v-1]+

∑

i=1..3 PROFILE1[u, i] ∗ PROFILE2[v, i] /* inner product */
(4)

The kernel function output is the score of the best alignmentof base-pair profiles of the
given RNA sequences. It should be clear that this kernel function returns higher values for
RNA sequences that shares a common pattern of base-pairing formation.

5 Experiments

We performed two experiments with different sets of negative examples. In the first ex-
periment, we used negative random sequences, and in the second experiment, we used



segments of messenger RNA fromC. elegansthat were predicted to fold like a hairpin
loop by the program SRNAloop [4]. In both experiments, we used 79 miRNA sequences
from C. briggsaeas positive examples [16]. The ratio of positive to negativeexamples was
1/1. We used the SVM package libSVM and 4-fold cross validation. The results are given
below.

Experiment 1: 93.7 % accuracy.

Experiment 2: 89.8 % accuracy.

6 Conclusion

We claim our method is very promising since its accuracy of 89.8% was obtained using a
small training set and without performing any parameter optimization (due to lack of time).
Probably even better results could be obtained by optimizing the SVM parameters and the
alignment score function (e.g. gap cost). Moreover, comparing with other methods in the
literature our method has the advantage of not being miRNA specific, i.e. it can also be
applied to classify among different families of RNA’s.
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