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1 Introduction

MicroRNA (miRNA) is a small non-coding RNA molecule of abdit nucleotides that reg-
ulates gene expression at the post-transcriptional |&us. miRNA silences target genes
by making complementary base pairs with the gene’s messétidas, leading to their
degradation or translational repression. The biogenesigumction of miRNAs have been
reviewed in [1, 6].

MicroRNAs were recently discovered, in 1993, when it wag figported that a small RNA

in Caenorhabditis elegangalledlin-4, was responsible for regulating the expression of
the lin-14 gene through direct interaction with its messenger RNA [, 1A few years
later, Andrew Z. Fire and Craig C. Mello published a papeNature[3] describing how
tiny snippets of RNA can destroy the gene’s messenger RNéréetf can produce a pro-
tein. Scientists then started to explore this mechanismed&NA interferencéRNAI), to
silence genes of therapeutic interests. RNAi has becomefahe most important recent
developments in molecular biology, as exemplified by the fiaat Fire and Mello were
awarded this year Nobel Prize in Medicine [15] for their digery.

The contribution of computational biology to miRNA resdaare threefold [2]: (1) iden-
tification of new microRNA genes in genomes; (2) predictibmicroRNA gene targets;
and (3) computational design of microRNAs to target thenéipgyenes. In this report, we
consider only the first problem, i.e., the problem of autacnacognition of microRNA
genes in genomic sequences.

2 Problem Definition

A microRNA precursor (pre-miRNA3 a RNA sequence of about 100 nucleotides that
contains the actual microRNA (ef 21 nt, also callednature miRNA The mature miRNA

is cleaved from its precursor by specific enzymes. The miRBognition problem is
usually defined over pre-miRNAs because they encode mavenmattion (to be exploited
by recognition algorithms) than the smaller mature miRN#péarticular, the pre-miRNAs
have a typical hairpin loop secondary structure as showigini-

Here we define the recognition problem as follows. Given a Rig4uence of- 100 nt,
determine whether it is a miRNA or not. The problem is moreri@sting (and harder!) at
those cases where the input RNA sequence folds like a typaigdin loop of miRNA, so



Figure 1: Secondary structure 6f elegandin-4 miRNA folded by RNAfold [5].

the algorithm should be able to discriminate between trueN#i hairpin loops from all
other hairpin loops.

3 Existing Methods

The simplest way to identify new miRNAs is through sequenomblogy searches us-
ing programs, such as BLAST. However, because miRNAs oftere mon-conserved se-
guences, this approach is limited to finding only a smalltfeacof miRNAs with close
homologs. Other approaches explore the fact that RNA seegraiructures tends to be
more conserved than their sequences. Such approachesrplpgrams, like RNAfold
[5], to predict the RNA secondary structure. The predictaacsures are then used to iden-
tify potential miRNA candidates that fold like a typical miR loop. We are particularly
interested in machine learning approaches applied to thidgm.

Currently, there are three machine learning approachegedpp miRNA identification
found in the literature, namely, support vector machindd\p Naive Bayes and hidden
Markov model (HMM). In the SVM [10] and Naive Bayes [14] appohes, a feature vec-
tor is extracted from a combination of sequence and (predjcitructure. Some features
include the composition of bases in specific positions, tiralrer and size of bulges, base
pairing mismatches, and so forth. The HMM approach [12] Hapalogy of hidden states
designed to learn the base-pairing compositions along {R&M hairpin-loop. It is dif-
ficult to say which approach is the most effective; since tiveye trained using different
datasets, their reported results are not directly comjarab



4 New Proposed Method

Since the existing approaches rely on predicted strugtweseason that their accuracy are
somehow limited by the accuracy of RNA secondary structuediption programs. While
the overall hairpin loop structure is predicted well, fingails like the size of loops and
bulges are not correctly predicted, resulting in noisydeatectors. In [7], it was reported
that 8 structures of miRNAs out of 10 were incorrectly préglic Therefore, we propose
a new machine learning approach that accounts for the sagpsttucture in an implicit
way without relying on a specific predicted structure, tlyiothe use of a kernel function
that computes a similarity measure for two RNA sequences.

4.1 New Kernel Function

We have designed a new kernel function that computes a sitypitaeasure for two RNA
sequences based on their patterns of base-pairing formatie shall describe the kernel
function in two steps: (1) computation ofese-pair profilefor each RNA sequence, and
(2) alignmnent of the two base-pair profiles.

The base-pair profile of a RNA molecule should capture itsepaiof base-pairing forma-
tion. Rather than relying on a single predicted structure use the McCaskill algorithm
[11] to compute base-pair probabilities based on thermanyeos principles. The result is
a matrix Pr[i, j] where each entry stores the probability of bageming a pair with base
j. The base-pair profile is&x3 matrix PROFILE (whereN is the sequence length) that
gives you for each basgits probability of forming base pairing upstrea®if) , down-
stream P.S) and not forming base pairind{P). These are readily computed frafr s, j]

as follows:

PROFILE[i,UP] =Y Prli,j] 1)
J>i
PROFILE[i,DS] = _ Prli, j] 2)
J<i
PROFILE[i,NP] =1 — PROFILE[i,UP] — PROFILE]i, DS]; (3)

The second step is the global alignment of tR&@O F'I L E’s. The alignment is computed
using the Needlman-Wunch algorithm with a modified scorysem. We allow gaps with
zero cost and we score the alignment of two bases by the imodugt of their probability
profile vectors. See the recurrence equation below.

Score[u-1,v] /* zero gap cost */
Score[u,v]= max { Score[u,v-1] /* zero gap cost */
Score[u-1,v-1} >, |, s PROFILE,[u,i]* PROFILE;[v,i [*inner product */
4)

The kernel function output is the score of the best alignnedéitase-pair profiles of the
given RNA sequences. It should be clear that this kerneltfoneeturns higher values for
RNA sequences that shares a common pattern of base-parmgtion.

5 Experiments

We performed two experiments with different sets of negatixamples. In the first ex-
periment, we used negative random sequences, and in thadsegperiment, we used



segments of messenger RNA frah eleganghat were predicted to fold like a hairpin
loop by the program SRNAloop [4]. In both experiments, wedug® miRNA sequences
from C. briggsaeas positive examples [16]. The ratio of positive to negagxamples was
1/1. We used the SVM package libSVM and 4-fold cross valaatiThe results are given
below.

Experiment 1: 93.7 % accuracy.

Experiment 2: 89.8 % accuracy.

6 Conclusion

We claim our method is very promising since its accuracy 08%9was obtained using a
small training set and without performing any parametemoigation (due to lack of time).
Probably even better results could be obtained by optimittie SVM parameters and the
alignment score function (e.g. gap cost). Moreover, coingawith other methods in the
literature our method has the advantage of not being miRNifip, i.e. it can also be
applied to classify among different families of RNA's.
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