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Abstract

Bag-of-words methods to the problems of semantic text classification
and textual entailment have seen some successful applications [3], their
straightforward applications are known to break when the training data
is sparse, the number of classes is large, or classes do not have clear
syntactic boundaries (for example when negational, conditional sentence
markers significantly affect classification). These are, however, proper-
ties of a typical semantic classification problem in the domain of natural
language tutoring systems. Recently formal methods have been evalu-
ated for reasoning about entailment using the logical representations of
natural language propositions [5]. This work extends those methods to
account for uncertainty in generating logical representations of natural
language sentences by using Bayesian networks with observable nodes
representing the logical propositions in the domain of the tutorial dia-
logue corpus, latent nodes corresponding to domain rule applications,
and semantic class label nodes. The problem of sparseness of training
data is dealt with by using logical inference engine to generate the net-
work structure, and using informative priors for parameter estimation.
The results demonstrate improved performance over the formal reason-
ing approaches and other baselines.

1 Introduction

1.1 Problem

Modern intelligent tutoring systems attempt to explore relatively unconstrained interactions
with students, for example via a natural language (NL) dialogue. The rationale behind this
is that allowing students to provide unrestricted input to a system would trigger meta-
cognitive processes that support learning (i.e. self-explaining) and help expose miscon-
ceptions WHY2-ATLAS, is designed to elicit NL explanations in the domain of qualitative
physics [6].

The system presents the student a qualitative physics problem and asks the student to type
an essay with an answer and an explanation. A typical problem and the corresponding
essay are shown in Figure 1.



After the student submits the first draft of an essay, the system analyzes it for errors and
missing statements and starts a dialogue that attempts to remediate misconceptions and
elicit missing propositions.

Although there are limited amount of classes of possible student beliefs that are of inter-
est to the system (of 20 statements representing semantic classes for the Pumpkin problem
the approach described here will target 16 selected as described in Section 2), there are
many possible NL sentences that are semantically close to be classified as representative of
one of these classes by an expert. Typically the expert will classify a statement belonging
to a certain class of student beliefs if either (1) the statement is a rephrasal of the textual
description of the belief class, or (2) the statement is a consequence (or, more rarely, a con-
dition) of an inference rule involving the belief. An example of the first case is the sentence
“pumpkin has no horizontal acceleration” as a representative of the belief class “the hori-
zontal acceleration of the pumpkin is zero.” An example of the second case is the sentence
“the horizontal velocity of the pumpkin doesn’t change” as a representative of the belief
class “the horizontal acceleration of the pumpkin is zero”: the former can be derived in one
step from the letter via a physics domain rule. These examples suggest that a model an ex-
pert’s classification of student beliefs would have to account not only for syntactic, but also
for inferential proximity of the statements. Note that in general, syntactic proximity alone
appears to be insufficient to predict of inferential proximity. In this paper we attempt to
augment syntactic proximity analysis with a graph of semantic relationships over the set of
domain statements. We will compare deterministic and probabilistic inference algorithms
that use this graph for a sentence classification.

1.2 Existing system overview

The sequence of natural language processing is as follows:

• A combination of a semantic-syntactic parser, template-filling classifier and a bag
of words statistical classifier generates a first-order predicate logic (FOPL) repre-
sentation of the input sentence [4].

• Based on the semantic representation of the student’s input, the completeness and
correctness analyzer attempts to classify whether the input sentence corresponds
to any of the pre-specified classes of student’s beliefs. For example, if the stu-
dent types “pumpkin has no horizontal acceleration,” the analyzer may infer that
student believes that the horizontal force of the pumpkin is zero.

In the early versions of WHY2-ATLAS, the reasoning about the student’s beliefs was done
by generating abductive proofs of the observed student’s input on-the-fly. More recently
we have used pre-generated deductive closure as a graph of semantic relationships in the
space of problem-specific domain statements and deterministic inference mechanism based

Question: Suppose you are running in a straight line at constant speed. You throw a pumpkin
straight up. Where will it land? Explain.

Explanation: Once the pumpkin leaves my hand, the horizontal force that I am exerting on
it no longer exists, only a vertical force (caused by my throwing it). As it reaches it’s maximum
height, gravity (exerted vertically downward) will cause the pumpkin to fall. Since no horizontal
force acted on the pumpkin from the time it left my hand, it will fall at the same place where it
left my hands.

Figure 1: The statement of the problem and a verbatim explanation from a student who
received no follow-up discussions on any problems.



on graph matching. We will compare the new approach with these existing deterministic
approaches in the experiments described in this report.

1.3 Desired extension

The deterministic mapping from the formal representation of the input to the graph of de-
ductive closure does not account for the uncertainty in generating formal semantic represen-
tation. It is desirable to extend the graph of logical relations over the domain statements (a
subset of the deductive closure of givens and false assumptions) into a probabilistic graph-
ical model, such as a Bayesian network, and estimate its parameters based on the actual
expert labeling of student sentences. In this project, we implement such such extension.

1.4 Related work

Bayesian networks have been gaining popularity as tool of choice for user model-
ing (e. g. [1]). The have proven particularly suitable for applications that benefit from
visualisable user model, such as tutoring systems with inspectable student models.

In the area of NLP, Bayesian networks have been used for reduction of cascading errors
in linguistic pipelines [2], among other applications. There, the probability distributions
generated by each individual component of NLP system have been accounted for by as-
signing a the component to a corresponding variable in the network, and performing the
approximate inference.

The present work follows the motivation and the general idea of reducing cascading errors
with the work by Finkel, Manning and Ng [2]. The major difference is that the Bayesian
network in our work is constructed in a semi-automatic fashion, the affordance of the rela-
tively well formalizable domain of qualitative mechanics.

2 Method

2.1 Classifier

The observed data in our problem is the mapping of the formal representations of NL
text to the corresponding nodes in the graph of deductive closure. We augment this graph
with additional nodes corresponding to class instances and class labels. Thus, the result-
ing Bayesian network graph in our proposed method (Figure 3, a fragment) consists of
following types of nodes:

• 159 nodes representing domain statements in the original deductive closure
(ovals in Figure 3). These nodes are observations generated by the semantic
parser/matcher;

• 45 nodes corresponding to domain rule applications in the original deductive clo-
sure (diamonds in Figure 3). These nodes are unobserved. Parents of these nodes
are nodes that are in the body of the rule application, and its children are the nodes
that are in the head of the rule application;

• 16 nodes representing the class label variables (triangles in Figure 3). They don’t
have children and their parents are nodes corresponding to the representatives of
the class among the subsets of domain statement nodes;

• 62 nodes corresponding to the representatives of the class (rectangles in Figure 3).

Each of 282 nodes in the network is boolean valued.



2.2 Parameter learning

The parameter learning is done via EM algorithm with both informative and uninforma-
tive priors using Bayes Net Toolbox for Matlab. Since the uninformative priors generated
significantly worse results than informative ones we report only results with informative
priors in this paper. The informative priors that worked best were boolean OR for class
label nodes, and boolean OR with probability p=0.1 of reversing its values for the other
nodes. Other priors that were discarded included boolean ANDs for all the nodes except
for the class labels.

2.3 Datasets

The data set is a set of labeled natural language sentences collected during a study with
real student subjects during Spring and Summer of 2005. The features are automatically
generated map to the statement nodes of the deductive closure (observable (oval) nodes of
the Bayesian network), human generated degree of quality of the semantic representation
(1, 2, . . . , 7); the labels are human generated class labels (multiple labels from the set of
16 can be assigned to each sentence) with binary confidence grades (high/low). A typical
entry is shown in Figure 2.

<entry>
<sentence>
Since f equals m times a, if the acceleration is zero then so is
the net force’the first part justifies the second.
</sentence>
<dprop>
((FORCE ID146441 ?VAR606326 ?VAR606327 *X3720018 *X3720017
*X3720016
X3720015 *X3720014 *X3720013 *X3720012 *X3720011 *X3720010
X3720009)
(REL-COORDINATE *X3720013 *X3720008)
(DEPENDENCY ID146442 ID146441 ?VAR606334 INDEPENDENT *X3720004
X3720003))
</dprop>
<typing>
NIL
</typing>
<quality>
2
</quality>
<tags>
p30a high
</tags>
</entry>

Figure 2: A typical data entry consisting of the natural language string, the formal represen-
tation, quality of representation (2 — human tagged), and the class label with confidence
level, tagged based on the input text string only (p30a, high — human tagged).
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Due to the small amount of labeled data (173 entries in each of two datasets) we decided to
discard the confidence values of class labels and semantic mapping for the current exper-
iment to reduce the complexity of the classifier. The two datasets correspond to the same
sentences and human labels but have different confidence threshold in the mapping to the
deductive closure nodes (in other words, different confidence in the observed values). We
will refer to them as data07 for the dataset with confidence level 0.7, and data09, with con-
fidence level 0.9. The data with lower confidence, counter-intuitively is harder to get (due
to increased search space of the graph matcher) but results in general in more matches with
statement nodes of the deductive closure/Bayesian network, potentially making it a better
training set. This is one of the hypothesis that we will test in our experiment.

3 Experiment

The experiment consisted of 10-fold cross-validation on data07 and data09 datasets. The
performance measures are average recall and average precision values for each of the en-
tries. The following classifiers have been compared:

• direct : Deterministic matching directly to the class representations (no deductive
closure structure).

• radius0 : Deterministic matching to the deductive closure and then direct matching
of the corresponding closure nodes to class representations (uses deductive closure
structure).

• radius1 : Deterministic matching to the deductive closure and then direct matching
of the closure nodes within inference distance 1 from the corresponding closure
nodes to class representations (uses deductive closure structure).

• BNun: Probabilistic inference using untrained Bayesian Network with informa-
tive priors (uses deductive closure structure).

• BN : Probabilistic inference using EM parameter estimation on a Bayesian Net-
work with informative priors (uses deductive closure structure).

• base: Baseline: a single class label that is most popular in the training set.

Classifier Recall Precision
direct 0.5529 0.50
radius0 0.5706 0.4935
radius1 0.6294 0.4414
BNun 0.2559 0.0619
BN 0.5647 0.5618
Base 0.4353 0.4353

Table 1: Performance of 6 classifiers
on data07.

Classifier Recall Precision
direct 0.5706 0.5618
radius0 0.5235 0.5235
radius1 0.5176 0.4209
BNun 0.2118 0.0614
BN 0.5176 0.5176
Base 0.4353 0.4353

Table 2: Performance of 6 classifiers
on data09.

First observation is that the higher confidence dataset data09 did not result in better perfor-
mance of the Bayesian network classifier. We attribute this to the fact that high confidence
data contained very sparse observations that were insufficient to predict the class label and
to train the parameters of the network.

Second, the deterministic methods that take advantage of the deductive closure structure
(radius0, radius1 ) outperform deterministic direct matching that does not use the struc-
ture on recall rate, although sacrificing the precision (Table 1). Moreover the method that
uses larger subset of the closure structure, radius1 has better recall (and the worse is the
precision) than the method that uses smaller subset of the closure structure radius0.



Third, the structure alone is insufficient to improve the precision, since the Bayesian net-
work that doesn’t learn parameters (using the informative prior), BNun, performs poorly
(worse than the popularity baseline).

4 Conclusion

In this study of textual semantic classification (entailment) we demonstrated that knowing
the structure of semantic relationships can improve recall of deterministic classifiers, and
learning the parameters of the Bayesian network utilizing this structure improves both recall
and precision over deterministic methods. We also disproved the hypothesis that the train-
ing data with higher confidence in the labels must necessarily result in better performance.
However this effect may be mostly due to the small amount of training data. Finally, we
demonstrated that a structure of Bayesian network can me derived via deterministic formal
methods when the amount of training data is not sufficient for statistical structure learning.
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