
Online Control Policy Search for the Robotic
All-Terrain Surveyor using Reinforcement Learning

Rolf Allan Luders
Robotics Institute

Carnegie Melloin University
Pittsburgh, PA 15213

rluders@andrew.cmu.edu

Krishnan Ramnath
Robotics Institute

Carnegie Mellon Univeersity
Pittsburgh, PA 15213
kramnath@cmu.edu

1 Introduction and Problem Formulation
The objective of this project is to devise an online control policy for a particular multi-legged robot.
The conceptual robot named robotic all-terrain surveyor (RATS) has 12 legs equally distributed over
a spherical surface, approximately the size of a soccer ball. The objective of this system is to have
the capability to circumvent complex obstacles through rough terrain. Each leg consists of a pneu-
matic piston that has enough power to make the whole robot hop. The concept of this robot was
made by Boeing Corporation, and it is being designed and developed by the Robotics Institute at
Carnegie Mellon University.

The twelve legged version of the robot is still on its design phase and no prototype has been built yet.
Since the system is highly complex a planar version of the robot has been built with only five legs in
a wheel shaped body (see Figure 1.) The idea of the planar version is to decompose the system into
a simpler form to eventually understand better the three-dimensional version.

This work focuses mainly in trying to implement a motion control strategy for the planar robot based
on unsupervised learning that will allow us to understand better the timing and action space of the
final system. Specifically, we wish to find an efficient way to start RATS from an initial rest position
and speed it up as we proceed. More often than not, conventional deterministic control strategies
prove to be a very bad starting point in terms of the amount of time taken to get the robot to achieve
a necessary speed in the right direction. A natural consequence is to use an unsupervised learning
algorithm such as Reinforcement Learning to learn an online control policy to do exactly this.

Reinforcement Learning (RL) refers to a class of problems in machine learning which postulate
an agent exploring an environment in which the agent perceives its current state and takes actions.
The environment, in return, provides a reward (which can be positive or negative.) Reinforcement
Learning algorithms attempt to find a policy for maximizing cumulative reward for the agent over
the course of the problem.

There are three fundamental parts of a Reinforcement Learning problem: the environment, the re-
inforcement function, and the value function. Every RL system learns a mapping from situations to
actions by trial-and-error interactions with a dynamic environment. For the control task at hand, the
feedback from the environment is obtained through the optical encoders that measure the angle tilt
and angular velocity of the robot. The “goal” of the RL system is then defined using the concept
of a reinforcement function, which is the exact function of future reinforcements the agent seeks to
maximize. In other words, there exists a mapping from state/action pairs to reinforcements; after
performing an action in a given state the RL agent will receive some reinforcement (reward) in the
form of a scalar value.

In our case, the reinforcement function will be in terms of the angular velocity, which we try to max-
imize. We give the robot a positive reward if it produces an angular velocity greater than a certain
threshold, in a particular direction (clockwise or anti-clockwse) and a negative reward in all other
cases, for each trial. Also, one of the interesting aspects of this problem is that the action space is
discrete and well-defined. For RATS the actions consist of firing one of the five pistons (1-5) or none
(0), thereby providing thrust to any one of the five legs of the robot or doing nothing at each step.

Since the action space is low-dimensional and discrete for the task at hand, we find that a majority of
Reinforcement Learning techniques can be applied to this problem, as it will become clear in later
sections.

The third element in the Reinforcement Learning process is to address the issue of how the agent
learns to choose “good” actions, or even how we might measure the utility of an action. For this
we define two terms - policy and value. A policy determines which action should be performed in
each state; a policy is a mapping from states to actions. The value of a state is defined as the sum of
the reinforcements received when starting in that state and following some fixed policy to a terminal
state. The value function therefore is a mapping from states to state values and can be approximated
using a variety of Reinforcement Learning techniques that can be used to perform this task.

Control Strategies for the Robotic All-Terrain Surveyor (RATS)
Kinematics, Controls and Dynamics KDC 16-264

Robotics Institute CMU

Allan Lüders

Introduction
The objective of this project is to analyze the control problem of a particular multi-legged robot.

The conceptual robot named robotic all-terrain surveyor (RATS) has 12 legs equally distributed over a
spherical surface the size of a approximately a soccer ball. The objective of this system is to have the
capability to circumvent complex obstacles through rough terrain. Each leg consists of a pneumatic
piston that has enough power to make the whole robot hop. This idea was invented by Boeing
Corporation, and it is being developed by the Robotics Institute at Carnegie Mellon University.

The twelve legged version of the robot is still on its design phase and no prototype has been
built yet. Since the system is highly complex a planar version of the robot has been built with only five
legs in a wheel shaped body (see Illustration 1). The idea of the planar version is to decompose the
system into a simpler form to eventually understand better the three-dimensional version.

This work focuses mainly in trying to implement simple motion control strategies for the planar

robot that will allow us to understand better the timing and action space of the final system. The rest of
the document is as following: first the setup of the control system is explained, this includes the basic
control hardware and software. Following that, a simple running strategy is explained and proved.
After that, the effect of varying the opening time of the air valves is shown. Finally, a simple delay
compensation and speed control strategy with feed back is explained and some results shown.

Illustration 1: 5-legged planar robot (blue rubbers are the
tips of the pistons)

Figure 1: Actual Robot Robot Simulator
Choosing the best one of the numerous techniques available to us is important and we focus a major
part of this report on that. We wish to find an optimal learning algorithm that is tailored to work best
for the definition of the environment, state/action space and reward function for RATS. In this report
we consider four different Reinforcement Learning algorithms1 - SARSA (Single-Step), Q-Learning
(Single-Step), SARSA (Lambda - Eligibility Traces) and Q-Learning (Lambda - Eligibility traces.)
We implemented each of these algorithms in C and tested them on a RATS simulator, which we built
using the Open Dynamics Engine (ODE.) We found that both SARSA and Q-Learning algorithms
with eligibility traces converged the fastest as compared to the other two. However, the One-Step
Q-Learning algorithm performed the best in terms of achieving the highest angular velocity of the
robot. We discuss the algorithms and the experimental results in detail in the next sections.

2 Methodology
2.1 Intuition

The task at hand is to get an all-terrain robot to perform navigation tasks with minimal or no super-
vision. A natural choice of learning algorithm would be to use one that is completely unsupervised
and works based on some optimality condition. The algorithm should learn by acting and correcting
itself based on feedback from the environment. Reinforcement Learning techniques help us to do
exactly this and hence were primary candidates for our task. Also the results obtained from our im-
plementations of these algorithms are highly encouraging and stand testimony to the fact that these
algorithms actually work well for the task that we have. We also wish to point out that application
of Reinforcement Learning techniques to the RATS framework has never been done before, to our
knowledge; we consider our work novel in that aspect. Hence, there is no state-of-art technique that
we can compare our methods to. Rather we perform a comparison of various existing RL techniques
for this particular task.

2.2 Proposed method and Algorithms Description
The objective of this project is to devise an efficient way to come up with a suitable starting point
for RATS robot so that the robot quickly tends towards achieving its maximum angular velocity. We

1We narrowed down our choices of the learning algorithms after a careful analysis of previous work in
Reinforcement Learning and the problem formulation. For a detailed analysis of related work, please refer to
the midterm report.

2

wish to summarize here the environment, actions, reward function and goal of the Reinforcement
Learning problem that we are trying to formulate for the control of RATS:

1. Environment: Feedback from the environment is obtained through the optical encoders
that measure the angle tilt and angular velocity of the robot.

2. Goal: Maximize the angular velocity of the robot.
3. Action: Open each one of the piston valves (1-5) or none (0), thereby providing thrust to

only one of the five legs of the robot or doing nothing at a particular time instant.
4. Reward: Positive reward if it produces an angular velocity greater than a certain threshold,

in a particular direction (clockwise or anti-clockwse) and a negative reward in all other
cases.

Having briefly formulated the RL framework for RATS, we wish to now analyze which of the pop-
ular RL techniques can be applied to this particular problem. We begin by noting that our action
space is low-dimensional and discrete and hence well-defined. Also, we wish to have an algorithm
that learns quickly and hence provides a suitable starting point for the robot that is better than the
manual control initialization.

After careful survey of existing literature we have narrowed down the choice of learning algorithms
to SARSA and Q-Learning algorithms. They are both popular learning techniques and have been
widely used in many control tasks. Also, these algorithms work really well when the space of all
possible actions is low-dimensional and discrete, which is exactly the case for RATS.

SARSA and Q-Learning are both similar algorithms except that Q-Learning is off-policy (not model
based.) It is based on value-iteration2 (truncates policy evaluation at each iteration) rather than
policy-iteration (perform policy evaluation at each iteration.) SARSA is a variant of Q-Learning
that is based on policy-iteration. Both algorithms converge to optimum although SARSA can be
faster in case the action space has high cardinality. We implement two different variants of each one
of these and compare their performances for the task at hand. We also implemented a version of
on-policy Actor-Critic algorithm based on [8], but found its performance to be poor on our task as
compared to the SARSA or Q-Learning algorithms and its variants, hence we exclude it from our
comparisons. In summary, the four algorithms that we compared were :

1. SARSA (One Step TD Control)
2. Q-Learning (One Step off-policy TD Control)
3. SARSA (Lambda - Eligibility Traces)
4. Q-Learning (Lambda - Eligibility Traces)

We explored the SARSA and Q-Learning techniques with eligibility traces to obtain more general
methods that may learn more efficiently. An eligibility trace (given by the lambda parameter) is a
temporary record of the occurrence of an event, such as the visiting of a state or the taking of an
action. The trace marks the memory parameters associated with the event as eligible for undergoing
learning changes. When a Temporal Difference (TD) error occurs, only the eligible states or actions
are assigned credit or blame for the error. Thus, eligibility traces help bridge the gap between events
and training information. Like TD methods themselves, eligibility traces are a basic mechanism for
temporal credit assignment.

In the next few sections we shall illustrate the algorithmic steps for each method described above.

2.3 SARSA Algorithm

Initialize Q (s, a) arbitrarily
Repeat (for each episode):

Initilaize s
Choose a from s using policy derived from Q (e.g., using ε-greedy)
Repeat (for each step of episode):

2For more information on value and policy iterations, see [1]. We omit these details in the report due to lack
of space.

3

Take action a, observer r, s′

Choose a′ from s′ using policy derived from Q (e.g., using ε-greedy)
Q (s, a)← Q (s, a) + α [r + γQ (s′, a′)−Q (s, a)]
s← s′; a← a′

until s is terminal

In the algorithm ε-greedy stands for a greedy policy search where it chooses the previous best action
each time except during ε percent of the time where it chooses a new random action.

2.4 Q-Learning One-Step Off-Policy Algorithm

One of the most important breakthroughs in Reinforcement Learning was the development of an
off-policy TD control algorithm known as Q-learning (Watkins, 1989.) Q-Learning is perhaps the
most popular of reinforcement techniques that are being used till date. The One-step Q-Learning
update rule is given by:

Q (st, at)← Q (st, at) + α [rt+1 + γmaxaq (st+1, a)−Q (st, at)] (1)

In this case, the learned action-value function, Q , directly approximates Q∗, the optimal action-
value function, independent of the policy being followed. This dramatically simplifies the analysis
of the algorithm. The policy still has an effect in that it determines which state-action pairs are
visited and updated. However, all that is required for correct convergence is that all pairs continue
to be updated. The Q-Learning algorithm described here can be obtained by replacing the learning
rule described in the SARSA algorithm with Eq 1 and performing some other minor modifications.
Please see [1] for details.

2.5 SARSA (Lambda)

In order to change the One-step version of SARSA to the one with eligibility traces, we need to
define a trace for each state/action pair which we denote as e (s, a). The update equation becomes:

Qt+1 (s, a) = Qt (s, a) + αδtet (s, a) , for all s, a

where δt = rt+1 + γQt (st+1, at+1)−Qt (st, at)

and

et (s, a) =
{

γλet−1 (s, a) + 1 if s = st and a = at;
γλet−1 (s, a) otherwise

}
2.6 Q-Learning (Lambda)

The update rule for Q-Learning with eligibility traces (a combination of the Q-Learning One-step
algorithm with the eligibility traces inclusion described in the previous section) is given by:

Qt+1 (s, a) = Qt (s, a) + αδtet (s, a) , for all s, a

where δt = rt+1 + γmaxa′Qt

(
st+1, a

′
)
−Qt (st, at)

and

et (s, a) = Isst
İaat

+
{

γλet−1 (s, a) + 1 if Qt−1 (st, at) = maxaQt−1 (st, at) ;
0 else

}
where Ixy is an identity indicator function with is 1 if x = y and 0 otherwise.
We shall discuss the implementation details of all four algorithms along with the results in the next
section.

3 Experimental Results

We test all our algorithms on a robot simulator built on Open Dynamics Engine (ODE) running
on Linux. We coded the RATS simulator on top of ODE and also implemented the four learning

4

Parameter Discrete Steps Range
Wheel Angle [rad] 31 from (-pi - 0.2) to (pi + 0.2)

Wheel Angle Rate [rad/s] 31 from (-10.1) to (21.0)
Height Angle [rad] 2 from (-2.0) to (0.1)

Height Angle Rate [rad/s] 2 from (-2.0) to (2.0)

Table 1: This table shows the parameters of the state space. We have four states as shown above that are
discretized into fixed set of values within a specified range.

Algorithm Steps e-greedy Discount Update Parameters
SARSA (One-Step) [1 10 1000] epsilon = 0.99*epsilon α = 0.3, γ = 1.0

Q-Learning (One-Step 1000 epsilon = 0.99*epsilon α = 0.3, γ = 1.0
SARSA (Lambda) 1000 epsilon = 0.95*epsilon α = 0.3, γ = 0.8, λ= 0.9

Q-Learning (Lambda) 1000 epsilon = 0.95*epsilon α = 0.3, γ = 0.8, λ= 0.9

Table 2: This table summarizes the parameter values that we chose for each algorithm that we tested. The
SARSA (One-Step) algorithm was tested with varying steps to show the learning behavior. The e-greedy
discount (given by epsilon) decides the trade-off between previous and random choices. We decrease the
discount parameter to reduce choosing random actions as the iterations increase. The update parameters (α -
learning rate, γ - discount factor and λ - traceability) are estimated empirically on a trial-and-error basis to give
optimal outputs.

algorithms discussed in the previous section in C. In this section the experimental results of the
simulation runs are presented. We wish to point out that RATS is governed by four parameters - the
Wheel Angle, Wheel Angle Rate, Height Angle and Height Angle Rate. All these are continuous
variables and hence our state space is a continuous space in four dimensions. To make it tractable
we discretize each state into a certain number of steps as summarized in Table 1. The number of
discrete steps for each state and the range of values are illustrated in the table.

0 200 400 600 800 1000
−2

0

2

4

6

8
wheel angle v/s step

step

an
gl

e
[r

ad
]

0 200 400 600 800 1000
−5

0

5

10

15
wheel angle velocity v/s step

step

an
gu

la
r

ve
lo

ci
ty

 [r
ad

/s
]

1 Episode
20 Episodes
1000 Episodes

Figure 2: The angle of the wheel versus the step at different episodes using One-step SARSA algo-
rithm.
The parameters for all four algorithms that were chosen after trying several different combinations
are summarized in Table 2. To show how the learning algorithms improve with respect the number of
episodes, three snapshots of the learning process are presented in Figures 2 and 3 using the One-step
SARSA algorithm.

5

The top plot of Figure 2 compares the angle of the wheel versus the step at different episodes. With
one episode (blue line), the wheel barely moves. Since the objective of the problem is to make the
wheel rotate as fast as possible in one direction, this solution is not satisfactory. If we now allow the
algorithm to run for 20 episodes, the solution presented improves dramatically (green line). Now
it can be seen that the wheel rotates almost 5 radians. Finally, if it runs till the total reward per
episodes converges, the result is even better (red line). The bottom plot from Figure 2, shows the
angular velocity of the wheel, which is the value to optimize. It is clear that with 1000 episodes the
solution is very good, and the initial acceleration is very fast.

Figure 3 shows which actions were performed at each step. Each of the three plots were generated
after a different number of episodes. The Y axis is the number of the leg that was fired, where 0
means no leg was fired, and numbers 1 to 5 indicate which of the five legs was fired at each time
step.

0 200 400 600 800 10000
1
2
3
4
5
6

Actions with 1 episodes

step

ac
tio

n

0 200 400 600 800 10000
1
2
3
4
5
6

Actions with 20 episodes

step

ac
tio

n

0 200 400 600 800 10000
1
2
3
4
5
6

Actions with 1000 episodes

step

ac
tio

n

Figure 3: The actions performed at each step using One-step SARSA algorithm.

It is interesting to note that with one episode (the uppermost plot) the actions chosen look randomly
distributed and do not make much sense. On the other hand, the bottom plot shows the best result
obtained. The plot shows a more ordered pattern, where actions are grouped tightly to ensure a good
thrust. The actions that have a circle around them actually represent the legs that are doing most of
the work, since they are against the ground in that step. The firings outside the circles are legs fired
in the air, probably to improve the behavior given that they might unbalance the wheel and help the
wheel to rotate in the correct direction.

In order to compare the performance of the four algorithms, the average angular velocity of the
wheel through a complete episode was taken as the benchmark. Figure 4(a) - left shows the average
angular velocity for each episode for the one-step SARSA and Q learning algorithms during the
whole learning process (from episode 0). Figure 4(b) - right shows the same results, but for the
Q-learning and SARSA algorithms with eligibility traces.

The most relevant aspect of this comparison is that the algorithms augmented with eligibility traces
converge much faster than their one-step counterparts. The one-step algorithms take almost 500

6

0 500 1000
!10

!5

0

5

10

15

Episode

av
g.

 a
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

:ne!step ;lgorith=s

:ne >tep >;?>;
:ne >tep @!learning

0 50 100
!2

0

2

4

6

8

10

12

Episode

av
g.

 a
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

;lgorith=s with EligiFility Graces

:ne >tep >;?>; ! traces
:ne >tep @!learning ! traces

Figure 4: Average angular velocity for each episode for all four algorithms.

0 200 400 600 800 1000
0

2

4

6

8
wheel angle v/s step

step

an
gl

e
[ra

d]

8ne 9tep 9:;9: 1000 Episodes
8ne 9tep ?!@earning 1000 Episodes
9:;9: A E!Braces 100 Episodes
?!@earning A E!Braces 100 Episodes

0 200 400 600 800 1000
0

5

10

15
wheel angle velocity v/s step

step

an
gu

la
r v

el
oc

ity
 [r

ad
/s

]

Figure 5: The angle and angular velocity of the wheel using the final learned policy of each of the
four algorithms.

episodes to converge, while the ones with eligibility traces have satisfactory results with only 50
episodes (note that the X- axis scales of the plot are different). Although the algorithms with el-
igibility traces converge faster, they do have some drawbacks - the important one being that their
final scores are not as good as the one-step methods. Also, it is important to note that the amount of
computation required per episode is much higher than One-step updates.

Figure 5 shows the angle and angular velocity of the wheel using the final learned policy of each of
the four methods. Again, the results are pretty similar for all four, however, there is small edge in
performance for the one-step algorithms. Also, the two algorithms based on Q-learning converged
to better final scores than the SARSA based.

7

The analysis we have provided above was drawn from our particular results, which may have some
bias based on the parameters we chose for each method. However, the conclusion is that all four
methods are robust, and prove that Reinforcement Learning is viable solution to control complex
systems such as the one presented in this work. The eligibility traces based methods proved to learn
very fast, and therefore it is highly probable that we will consider them for testing in the real robot
in the near future.

References

[1] R. S. Sutton and A. G. Barto (1998) Reinforcement Learning: An Introduction, MIT Press, Cambridge,
MA.

[2] M. Harmon. (1996) Reinforcement learning: a tutorial.

[3] Bradtke, S. J. and Duff, M. O. (1995). Reinforcement learning methods for continuous-time markov deci-
sion problems. In Advances in Neural Information Processing Systems, MIT Press.

[4] Robotic All-Terrain Surveyor (RATS) videos:
http://www.frc.ri.cmu.edu/˜aluders/videos/RATS_4-23-06.avi
http://www.frc.ri.cmu.edu/˜aluders/videos/RATS_4-23-06_single_hop.avi.

[5] L.P. Kaelbling, L.M. Littman and A.W. Moore, Reinforcement learning: a survey, Journal of Artificial
Intelligence Research, vol. 4, pp. 237–285, 1996.

[6] T. Thorpe and C. Anderson. Traffic Light Control Using SARSA with Different State Representations.
http://www.cs.colostate.edu/˜anderson/res/rl/.

[7] Neumann Gerhard, The Reinforcemen Learning Toolbox: RL for optimal control Tasks
http://www.igi.tugraz.at/ril-toolbox/general/overview.html

[8] A.G. Barto and R.S. Sutton and C. Watkins (1990) Learning and Sequential Decision Making, MIT Press,
Cambridge, MA,

[9] Videos of RATS using SARSA learning algorithm:
http://www.frc.ri.cmu.edu/˜aluders/videos/RATS_RL_10.avi
http://www.frc.ri.cmu.edu/˜aluders/videos/RATS_RL_1500.avi
http://www.frc.ri.cmu.edu/˜aluders/videos/RATS_RL_3000.avi

8

