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1 Introduction

N-terminal acetylation is one of the most common protein modifications in eukaryotes,
occurring on approximately 80%—90% of the cytoplasmic mammalian proteins and 50%
of yeast proteins (Polevodaet al., 2003). In my previous work, I have trained a SVM
classifier to classify the acetylated residues. A yeast dataset obtained from (Kiemeret al.,
2005) was used as the training set. I also tested the model on amammalian protein data
set extracted from the Uniprot which containes 77 mammalianproteins with the maximum
similarity of 80%. The polypeptide sequences were first truncated to their N-terminal 40
residues, then I extracted patterns with a sliding window ofseveral amino acids. Sparse
coding scheme (Blomet al., 1996) was used for translating the amino acids to 0-1 vectors
as input to the model. Then support vector machine (SVM) was used as the training model
and classifier.

In the traditional scheme of dealing with such problems (N-terminal modification), posi-
tion 1 is usually used as the target residue; but here I also tried another experiment using
position 2 as the target residue. The reason why I am doing this can be explained from
the observation of Figure 1, from which we see that all positive examples begin with either
“M” (methionine) or “X” (empty). Thus the information aboutthe N-terminal methionine
cleavage has been encoded into the patterns if we use position 2 as the target residue. A
comparison was made between these two experiments both using SVM but different pat-
tern extraction schemes. By doing so I found there is a significant increase in prediction
accuracy (Figure 2). So the effect brought by the new scheme is two-fold: first, it con-
tains N-terminal location information; second, it contains N-terminal methionine cleavage
information, which may affect the acetylation motif to someextent, as previous research
indicates that methionine cleavage occurs ahead of acetylation in time (Polevodaet al.,
2003). But this hypothesis remains to be verified. In this paper, I would like to explore this
problem with unsupervised procedures.
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Figure 1: Shannon information (Shannon, 1948) sequence logo of 57 acetylation sites, in
the format of extracted patterns. Acetylation is reported on Position 2 in the logo.
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3 Method: k-Means Clustering with Kernel Tricks

The basic idea is to use clustering on the dataset and see how the pattern extraction method will influ-
ence the unsupervised procedure. Here we usek-means clustering, wherek is simply 2. The general
k-means clustering uses Euclidean distance as the distance measure, but it is obviously inappropriate
for the sparse coding scheme. In this case the Euclidean distance will become the square root of
Hamming distance, which causes evident information loss. Furthermore, because I used SVM as the
training model, and the distance measure in SVM is represented in terms of kernel function, thus it is
advisable that kernels also be used in the clustering procedure.

Kernels can be regarded as generalized dot products (Bernhard et al., 2002), denoted ask(·, ·). When
a kernel is introduced, a non-linear feature space is implicitly constructed along with a mapping from
the original space to the new one. Let this mapping be denotedΦ, thus each samplex in the original
space is mapped into the feature space asΦ(x). Given the kernel function, we can compute the dot
product ofx andx′ in the feature space without explicitly solvingΦ(x) andΦ(x′), i.e.,

k(x, x
′) = 〈Φ(x), Φ(x′)〉.

Basically, all the computation here concerning the distance can be done using kernel.

By definition, the Euclidean distance between two samples isthe norm of the difference between
them:

d(x, x
′) = ‖x − x

′‖ =
p

〈x − x′, x − x′〉.

For comparison only, the square root can be cast away,
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thus we only need to know the dot product to solve the distance.

Similarly, we can compute the distance in the feature space with kernels alone, that is

d
2(Φ(x),Φ(x′)) = k(x, x) + k(x′

, x
′) − 2k(x, x

′).

In k-means clustering, a key step is to compute the center of eachcluster in each iteration, and
compute the distance between each sample and each center. Wecan do this with kernels as well:
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Φ(xi) is the center of a cluster containingxi, i = 1, . . . , m.

Then here comes the problem of kernel selection. First of all, in order to be consistent with my
previous work, I use the RBF kernel. The RBF kernel has the form

k(x, x
′) = exp

`

−γ||x − x
′||2

´

.

I also employ exactly the same parameter as in the previous SVM experiment, in whichγ = 0.14.
Note that for the RBF kernel the dot product of two identical samples is a constant 1, i.e.,k(x, x) = 1.
Thus

d
2(Φ(x),Φ(x′)) = 2 − 2k(x, x

′).

Finally, I would try another interesting kernel. My new kernel will be based on the substitution matrix
Blosum62 used in the sequence alignment. The substitution matrix is computated based on rigorous
statistical theories and contains scores for all possible exchanges of one amino acid with another. The
equation for calculating a scores(a, b) for aligning two residuesa andb is :

s(a, b) =
1

λ
log

pab

fafb

wherepab is the probability that we expect to observe residuesa andb aligned in homologous se-
quence alignments.fa andfb are background frequencies: the probabilities that we expect to observe
amino acidsa andb on average in any protein sequence. Positive scores mean conservative substitu-
tions, and negative scores indicate nonconservative substitutions. The substitution probability comes
from the homologous aspects of the residues of the proteins,intuitively it stands for some kind of
“distance” between different residues. Then it is natural to consider constructing a kernel from the
substitution matrix. However, to construct a kernel, it is required that the Gram matrix be positive
definite. Unfortunately Blosum62 itself is not, so we add a constant(say, 4) to each element in the
matrix to make it positive definite. And then we can use this matrix as the Gram matrix of the kernel.

4 Experiment

The first two experiments try to find answers to the following two questions:

1. whether the methionine cleavage is related to the acetylation motif;

2. whether the methionine cleavage information is consistent with the acetylation motif to
affect acetylation.

Hereby a sample selection mechanism is introduced. For the first question, only positive samples are
considered, and they are labeled with whether they begin with “M”, namely, whether they retain the
N-terminal methionine; for the second question, both positive and negative samples are considered,
and they are labeled with whether they have been acetylated.However, in order to neutralize the
location information, I focus on the negative samples that begin with “M” or “X”, which generally
means they are also at the N-terminus. This yields to about 95samples altogether. The first two
experiments both use RBF kernels. The third experiment The third experiment is performed on the
data used in Experiment 2. It is primarily for exploratory purpose, I just want to see how this new
kernel works on this problem.



Figure 2: Results obtained from SVM classification with different pattern extraction meth-
ods.

For the sake of comparison, I perform each of the experiment in two groups, each group corresponds
to a different pattern extraction scheme. That is, one groupuses position 1 as the target, the other
uses position 2 as the target. I would like to see how much the result “agrees” with the label. Here I
postulate that the clustering procedure could discriminate the natural tendency of the data. The level
of “agreement” is measured by summing up the common part of clusters and label groups. And I will
perform each set of experiments 10 times and calculate the average to avoid accidental outcome.

5 Results and Discussion

Figure 5, 6 and 7 illustrate the results we obtained. In each figure, different curve type corresponds to
different pattern extraction scheme. In Figure 5, the dashed line does not vary with the window length
and remains at a low level. Since the samples used in experiment 1 are all positive, it is inferred that
without additional information, the acetylation motif does not contain information to discriminate
whether N-terminal methionine is retained or not. And the reason for the variation of the solid curve
is self-evident, as the first residue in the pattern agrees with the label.

In Figure 6, the solid curve is under the dashed curve most of the time, which suggests the me-
thionine cleavage information somehow obscures the motif that discriminates acetylation. It is also
notable that both curves reach their peak when the window length is 6, from which we can infer the
approximate range of the acetylation motif is 5 residues after the target. Interestingly, this inference
agrees with both the result obtained in (Liuet al., 2004) and the previously proposed supposition in
(Polevodaet al., 2003).

6 Conclusion

From the result of the experiment, we conclude that N-terminal methionine cleavage is, if not uncor-
related, inconsistent with the acetylation motif to affectacetylation; and the improvement obtained
in our previous work mainly results from the N-terminal location information brought by the new
pattern extraction scheme. We also find that clustering in combination with kernel tricks is useful in
exploring motif identification problems, as different kernels can be used in specific problems to re-
trieve more information from the data. Also, the new kernel seems working just fine on this problem.
I am looking forward to more powerful kernels for biologicalproblems.



Figure 3: Experimental data of Experiment 1.

Figure 4: Experimental data of Experiment 2.
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Figure 5: Result of Experiment 1. Number of average matchingpoints between Clus-
ters(using RBF kernel) and methionine cleavage label groups.
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Figure 6: Result of Experiment 1. Number of average matchingpoints between Clusters
(using RBF kernel) and acetylation label groups.
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Figure 7: Result of Experiment 3. Number of average matchingpoints between Clusters
(using Blosum62 derived kernel) and acetylation label groups.


