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Abstract

We present an analysis of historical precipitation data forthe United
States’ Pacific Northwest, measured for the years 1949-1994on a grid
of approximately 50km resolution. We have implemented a Bayesian
network with nodes representing individual geographic grid regions. Di-
rected, weighted edges represent dependence relationships between re-
gions. Using a modified K-2 learning algorithm, we build a heuristically
optimal Bayesian network. We examine degree of dependence between
regions, the predictive capacity of a minimal set of measurements, and
evaluate the utility of additional strategically selectedmeasurements in
enhancing local predictions.

1 Introduction

Although weather prediction is essential to many of our social and economic processes, ac-
curate prediction remains an open field of research. On the most simplistic level, weather
derives from a variety of interdependent physical factors,including wind speed, air pres-
sure, temperature, ocean currents, and local topology. Meteorologists typically rely upon
numerical atmospheric circulation models (ACMs) to predict local and global weather at
short and long time scales. These models are most effective at low resolution, predicting
large-scale events [1].

An orthogonal approach to weather prediction involves statistical models constructed from
local historical data. Such models are typically designed to represent local effects. Many
machine learning techniques such as Markov chains, auto-regressive models, and neural
networks have been used with limited success. In particular, these models fail to represent
spatial and temporal dependencies between neighboring locales [1].

In this study, we examine the use of Bayesian networks to better capture regional depen-
dencies in the limited context of precipitation prediction. We are particularly interested
in determining a minimal set of measurement sites sufficientto quantitatively predict local
rainfall. Central to these goals, we exploit the interdependence between geographically dis-
parate measurements to evaluate the utility of each existing measurement site and potential
new sites.

From the given historical data, we construct a high-resolution (<=50km grid) probabilistic



Figure 1:Histogram of Rainfall (mm)
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model of rainfall throughout the Pacific Northwest. We are particularly interested deter-
mining a minimal set of measurement sites sufficient to quantitatively predict local rainfall.
Central to these goals, we exploit the interdependence between measurements at distinct
stations and geographic regions to evaluate the utility of each data source.

2 Data

We have been provided precipitation data derived from a number of measurement sites
throughout the United States’ Pacific Northwest [2]. This data is formatted to a grid of 17
discrete latitudes and 16 discrete longitudes. The actual measurement stations within each
grid cell have been consolidated. Several cells have no measurement sites. For each geo-
graphical area, a daily measurement of rainfall is providedfor the years 1949-1994, totaling
16801 daily measurements. Due to the nature of the data collection, some locations do not
include daily measurements over the period considered. Thefew grid points, or nodes,
with incomplete measurements over the full time series havebeen omitted for simplicity.
All analyses have been performed using the 167 nodes with complete data series.

Data pre-processing consisted of conversion from the provided netCDF format to a native
three-dimensional Matlab array more amenable to analysis without additional Matlab in-
terfaces. Several such Matlab-netCDF interfaces are available, though none proved usable
with the particular Matlab environment available to us. An indirect approach was accom-
plished by first transforming the netCDF format to ASCII using native libraries, and finally
reconstructing a multidimensional Matlab array.

2.1 Discretization

Daily rainfall measurements are supplied as continuous values of millimeters per day. To
facilitate construction of a discrete Bayesian network, weopted to to discretize rainfall
to six categories, corresponding to 0-1 (’no rain’), 1-5, 5-15, 15-40, 40-100, and>100
mm/day, respectively. This approach as been used previously to represent light, medium,
and heavy rain [1]. The histogram within Figure 1 illustrates the number of measurements
observed within each category. We sought to minimize data skew by empirically selecting
thresholds to represent equal-sized populations within each category. A roughly exponen-



Figure 2:Modified K-2 Algorithm

Input: Quantized data of n nodes, an ordering of n nodes,
an ordering of neighbors for each node, max_parents

Output:Adjacency matrix representing all directed edges in the
network

For i = 1 to n
parent_i = []; #Initial condition: no parent node for any node
P_old = f(i, parent_i); #Probability of data (i node) given parent_i
Gonext = true;
While Gonext & size(parent_i) < max_num
P_new = f(i, parent_i, another parent_i); # choose from neighbors
If P_new > P_old

P_old = P_new;
parent_i = parent_i + another parent_i;

else Gonext = false;
end
Save parent nodes for node i; # in adjacent matrix

end
return adjacency matrix

tial decrease from 0mm/day in the number of measurements is observed, resulting in in-
creasing category bin widths. Note that all values within the 0-1 category are exactly 0 and
are thus insensitive to threshold selection. Note that Euclidean distances and correlation
were calculated with the original continuous data series.

3 Methods

3.1 Bayes Network Construction

As each node in a Bayes network may conditioned upon any othernode in the network,
exhaustively learning an optimal network structure for allbut the smallest networks is com-
putationally intractable. Indeed, this problem is NP-hard. As such, a number of heuristics
are commonly used to approximate a globally optimal DAG structure. These include the
Metropolis-Hastings Markov Chain Monte Carlo (MCMC) method to sample the DAG
space, hill climbing methods to explore node neighbors incrementally, active structure
learning[3], and structural EM [6]. We utilized the K-2 algorithm[7] due to its ease of
implementation and suitability for subsequent modification.

An ideal network structure maximizes the probability of thenetwork given the observed
data, argmaxnetP(net|data). Using Bayes’ rule and a constant P(data), argmaxnetP(net|data)

= argmaxnet
P(net,data)

P(data) = argmaxnet P(net, data). Structure learning algorithms score poten-
tial networks based upon this latter property.

The standard K-2 algorithm is a greedy algorithm that iteratively selects parents for each
node independent of other all other nodes. Beginning with anempty set of parents at each
node, the method incrementally adds any single parent whichincreases the node’s overall
score. This is repeated until no single additional parent can increase the score. The method
does require a fixed node ordering to avoid cycles.

We have examined two efficiency improvements of the K-2 algorithm to facilitate practical
computation of our large, 167 node network structure. First, while the standard K-2 im-



Figure 3:Pacific Northwest Measurement Stations

plementation iteratively adds all beneficial parents from the set of previously visited nodes,
we have set an upper limit on the number of possible parents. Secondly, we have limited
the set of parents considered to significantly less than the complete node ordering. We have
modeled this after the concept of theLocal K-2algorithm, described in [1]. TheLocal K-2
algorithm was used to consider only a node’sk-nearest neighbors, measured by correlation.
In addition to the

We have examined the efficacy of both correlation and and euclidean distance in selecting
potential parents. Note that the pairwise euclidean distances and correlation were calcu-
lated with the original, continuous data series.

4 Results and Discussion

As an initial evaluation of our approach, we selected a subset of five grid regions. We then
calculated a topological structure of these stations by K-2algorithm. As a naive approach
to node ordering for this heuristic, we presented nodes in a Southwest to Northeast order,
consistent with global wind patterns for the area. Figure 3 indicates the grid subregion
selected. Note that (*) indicates a physical measurement station from which grid cell values
have been derived. Several example learned topologies are shown for durations of 1 month,
1 year, 10 years, and two selections of the maximum number of parents per node. These
serve to illustrate the sensitivity to parameter selection.



Figure 4:Correlation Between Measurement Nodes
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Network Structure

Figure 4 illustrates the correlation between measurement sites. The correlation coefficient
between sites was calculated using all 16801 continuous measurements from each. To
compactly represent the greatest correlation coefficients, we draw a colored line between
two sites as follows: yellow (corr> 0.95), magenta (corr> 0.90), blue (corr> 0.85), green
(corr > 0.80), and black (corr> 0.75). The densely connected, and highly correlated,
Western region is of meteorological significance in that theCascade mountain range runs
vertically at approximately the observed longitude. This range separates a relatively wet,
coastal climate from the comparatively more arid Eastern region.

Measurement sites exhibit greatest correlation with theirimmediate geographic neighbors.
In the West, knowledge of precipitation anywhere throughout this highly connected compo-
nent facilitates accurate inference. By contrast, sites inEastern longitudes are less similar
to both immediate as well as distant neighbors. This may reflect an inability of our model
to perform well in arid regions or that local climate effectsare more significant. Additional
measurement sites would be best placed within these sparsely correlated regions to enhance
the predictive power of the resulting Bayesian network model.

We have also considered euclidean distance of the time-series data to aid in selecting ap-
propriate parents of a node. Figure 5 shows a ranking of distance to neighbors in this
space. From closest distance, the coloring is yellow, magenta, blue, green, and black. This
plot indicates the best possible selection of neighbors andclearly demonstrates that a site’s
immediate geographic neighbors are the best predictors.

Bayesian Inference

The ten nearest neighbors of each node, in euclidean distance, were used to learn the graph
structure from our complete data set. This graph structure was then used as a basis to train



Figure 5:Euclidean Distance Rank
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a Bayesian network using conditional probabilities derived from the observed frequencies.
We evaluated this Bayesian network by several methods. First, we examined subsets of
nodes known to be highly correlated. As an example, Table 1 illustrates the sensitivity
of the measurement site at longitude 6, latitude 15 (6,15) tothe value of its neighboring
parents, (6,14) and (7,15).

This is representative of all highly correlated nodes. Interactions are also present across
greater geographic distances within correlated components. In general, the conditional
probability tables in this propagation contain fewer zero probabilities (and thus are not
shown).

The second major approach utilized to examine the quality ofthe Bayesian network was
to examine the data likelihood. Figure 6 shows the log-likelihood of the data for each of
the original 16801 data samples. Despite construction of the Bayesian network from the
complete data set, the data at many time-points exhibit surprisingly low log-likelihoods. We
expect this may be due to sub-optimal data partitioning, possibly with respect to seasonal
changes. Time permitting, we aim to further examine any periodicity in time of this log-
likelihood to establish partitions of the data. Initial data cross-validation results do not
indicate significant network structure changes among random data samples. Additionally,
the log-likelihoods within a test set are very similar, further suggesting that our method
performs similarly across the data set.



Table 1:Marginal and Conditional Probabilities of Site (6,15)
value P((lat6,lon15) = value)

1 0.6060
2 0.0554
3 0.0814
4 0.1027
5 0.1012
6 0.0534

(6,15) (7,15) (6,14) P((6,14| (6,15), (7,15))
1 1 1 0.9882
1 1 2 0.0102
1 1 3 0.0016
1 1 4 0.0000
1 1 5 0.0000
1 1 6 0.0000
6 6 1 0.0000
6 6 2 0.0000
6 6 3 0.0044
6 6 4 0.0087
6 6 5 0.1004
6 6 6 0.8865
All omitted values have zero probability.

Figure 6:Daily Sample Log-likelihood
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5 Conclusions

Using our modified K-2 algorithm, we have been able to rapidlybuild a Bayesian network
representative of rainfall in the US Pacific Northwest. We also consider dependence be-
tween measurement sites using correlation coefficients as well as distances of time series.
Based on the pattern of correlation coefficients, we can propose additional measurement
sites to get a higher prediction on the area. From the figure ofcorrelation and Bayesian net-
work, we can conclude that Bayesian network appropriately represents the dependence of
measurement sites. Future directions include additional evaluation and comparison of dis-
tinct network structures constructed from subsets of measurement sites. While we sought
to examine the limited context of inference within single time-steps, the consideration of
temporal interactions, possibly using a dynamic Bayesian network, may yield increased
accuracy and facilitate forecasting.
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