Learning a probabalistic model of rainfall using
graphical models

Byoungkoo Lee Jacob Joseph
Computational Biology Computational Biology
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
byounko@ndr ew. cru. edu j nj oseph@ndr ew. cmu. edu
Abstract

We present an analysis of historical precipitation datatfer United
States’ Pacific Northwest, measured for the years 1949-b8% grid
of approximately 50km resolution. We have implemented aeB@n
network with nodes representing individual geographid gegions. Di-
rected, weighted edges represent dependence relatisristtiyween re-
gions. Using a modified K-2 learning algorithm, we build a tigtically
optimal Bayesian network. We examine degree of dependesteeshbn
regions, the predictive capacity of a minimal set of measams, and
evaluate the utility of additional strategically selectedasurements in
enhancing local predictions.

1 Introduction

Although weather prediction is essential to many of ouralcad economic processes, ac-
curate prediction remains an open field of research. On tret simplistic level, weather
derives from a variety of interdependent physical factorsluding wind speed, air pres-
sure, temperature, ocean currents, and local topologyedfelogists typically rely upon
numerical atmospheric circulation models (ACMs) to pretbcal and global weather at
short and long time scales. These models are most effedtlegvaesolution, predicting
large-scale events [1].

An orthogonal approach to weather prediction involvessitaal models constructed from
local historical data. Such models are typically desigmedtpresent local effects. Many
machine learning techniques such as Markov chains, agtessive models, and neural
networks have been used with limited success. In particilase models fail to represent
spatial and temporal dependencies between neighboriateofl].

In this study, we examine the use of Bayesian networks t@be#ipture regional depen-
dencies in the limited context of precipitation predictiowe are particularly interested
in determining a minimal set of measurement sites suffi¢eequantitatively predict local
rainfall. Central to these goals, we exploit the interdej@ste between geographically dis-
parate measurements to evaluate the utility of each egistasurement site and potential
new sites.

From the given historical data, we construct a high-resmiutc =50km grid) probabilistic



Figure 1:Histogram of Rainfall (mm)
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model of rainfall throughout the Pacific Northwest. We aretipalarly interested deter-
mining a minimal set of measurement sites sufficient to qtaiviely predict local rainfall.
Central to these goals, we exploit the interdependencedastineasurements at distinct
stations and geographic regions to evaluate the utilityachelata source.

2 Data

We have been provided precipitation data derived from a rarmob measurement sites
throughout the United States’ Pacific Northwest [2]. Thitada formatted to a grid of 17
discrete latitudes and 16 discrete longitudes. The acteaborement stations within each
grid cell have been consolidated. Several cells have nounem&nt sites. For each geo-
graphical area, a daily measurement of rainfall is providethe years 1949-1994, totaling
16801 daily measurements. Due to the nature of the datectiolle some locations do not
include daily measurements over the period considered. f@luegrid points, or nodes,
with incomplete measurements over the full time series l&@an omitted for simplicity.
All analyses have been performed using the 167 nodes witlplatendata series.

Data pre-processing consisted of conversion from the gea/netCDF format to a native
three-dimensional Matlab array more amenable to analysi®out additional Matlab in-
terfaces. Several such Matlab-netCDF interfaces areadnlajlthough none proved usable
with the particular Matlab environment available to us. Adirect approach was accom-
plished by first transforming the netCDF format to ASCII @simative libraries, and finally
reconstructing a multidimensional Matlab array.

2.1 Discretization

Daily rainfall measurements are supplied as continuousegabf millimeters per day. To
facilitate construction of a discrete Bayesian network, opted to to discretize rainfall
to six categories, corresponding to 0-1 ('no rain’), 1-51%-15-40, 40-100, and-100
mm/day, respectively. This approach as been used preyitusépresent light, medium,
and heavy rain [1]. The histogram within Figure 1 illustsatee number of measurements
observed within each category. We sought to minimize dadevdky empirically selecting
thresholds to represent equal-sized populations withih eategory. A roughly exponen-



Figure 2:Modified K-2 Algorithm

Input: Quantized data of n nodes, an ordering of n nodes,
an ordering of neighbors for each node, max_parents
Qut put : Adj acency matrix representing all directed edges in the

net wor k
For i =1ton
parent i = []; #lnitial condition: no parent node for any node

P old = f(i, parent_i); #Probability of data (i node) given parent i
Conext = true;
Whi | e Gonext & size(parent_i) < max_num
P new = f(i, parent_i, another parent_i); # choose from nei ghbors
If P new > P old
P old = P_new,

parent i = parent_i + another parent_i;
el se Gonext = fal se;
end
Save parent nodes for node i; # in adjacent matrix
end

return adjacency matrix

tial decrease from Omm/day in the number of measurementssisreed, resulting in in-
creasing category bin widths. Note that all values withe®@hl category are exactly 0 and
are thus insensitive to threshold selection. Note thatiBeah distances and correlation
were calculated with the original continuous data series.

3 Methods

3.1 Bayes Network Construction

As each node in a Bayes network may conditioned upon any ot in the network,

exhaustively learning an optimal network structure foball the smallest networks is com-
putationally intractable. Indeed, this problem is NP-hakd such, a number of heuristics
are commonly used to approximate a globally optimal DAGdtree. These include the
Metropolis-Hastings Markov Chain Monte Carlo (MCMC) methim sample the DAG

space, hill climbing methods to explore node neighborsemantally, active structure
learning[3], and structural EM [6]. We utilized the K-2 atligom[7] due to its ease of
implementation and suitability for subsequent modifiaatio

An ideal network structure maximizes the probability of thetwork given the observed
data, argmaseP(netdata). Using Bayes'’ rule and a constant P(data), arga(xetdata)

= argmaet % = argmaxet P(net, data). Structure learning algorithms score poten-

tial networks based upon this latter property.

The standard K-2 algorithm is a greedy algorithm that iteest selects parents for each

node independent of other all other nodes. Beginning witerapty set of parents at each

node, the method incrementally adds any single parent whakases the node’s overall

score. This is repeated until no single additional parenticerease the score. The method
does require a fixed node ordering to avoid cycles.

We have examined two efficiency improvements of the K-2 allgorto facilitate practical
computation of our large, 167 node network structure. Fuiile the standard K-2 im-



Figure 3:Pacific Northwest Measurement Statlons
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plementation iteratively adds all beneficial parents fromget of previously visited nodes,
we have set an upper limit on the number of possible paremtsor&lly, we have limited
the set of parents considered to significantly less thandhgtete node ordering. We have
modeled this after the concept of thecal K-2algorithm, described in [1]. Theocal K-2
algorithm was used to consider only a nodeisearest neighbors, measured by correlation.
In addition to the

We have examined the efficacy of both correlation and anddmart distance in selecting
potential parents. Note that the pairwise euclidean digtamand correlation were calcu-
lated with the original, continuous data series.

4 Results and Discussion

As an initial evaluation of our approach, we selected a dudfdese grid regions. We then
calculated a topological structure of these stations byad{gdrithm. As a naive approach
to node ordering for this heuristic, we presented nodes ioutsvest to Northeast order,
consistent with global wind patterns for the area. Figureddates the grid subregion
selected. Note that (*) indicates a physical measurematibstfrom which grid cell values
have been derived. Several example learned topologiesandor durations of 1 month,
1 year, 10 years, and two selections of the maximum numbeamfnps per node. These
serve to illustrate the sensitivity to parameter selection



Figure 4:Correlation Between Measurement Nodes
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Network Structure

Figure 4 illustrates the correlation between measurenit@st SThe correlation coefficient
between sites was calculated using all 16801 continuousumements from each. To
compactly represent the greatest correlation coeffigievesdraw a colored line between
two sites as follows: yellow (cors 0.95), magenta (cors 0.90), blue (corr> 0.85), green
(corr > 0.80), and black (corr> 0.75). The densely connected, and highly correlated,
Western region is of meteorological significance in that@ascade mountain range runs
vertically at approximately the observed longitude. Thisge separates a relatively wet,
coastal climate from the comparatively more arid Eastegiore

Measurement sites exhibit greatest correlation with tineinediate geographic neighbors.
In the West, knowledge of precipitation anywhere throudttis highly connected compo-
nent facilitates accurate inference. By contrast, sitdsastern longitudes are less similar
to both immediate as well as distant neighbors. This mayatedie inability of our model
to perform well in arid regions or that local climate effeate more significant. Additional
measurement sites would be best placed within these spamsetlated regions to enhance
the predictive power of the resulting Bayesian network nhode

We have also considered euclidean distance of the timessdata to aid in selecting ap-
propriate parents of a node. Figure 5 shows a ranking ofrdisté#o neighbors in this
space. From closest distance, the coloring is yellow, magétue, green, and black. This
plot indicates the best possible selection of neighborcéeatly demonstrates that a site’s
immediate geographic neighbors are the best predictors.

Bayesian Inference

The ten nearest neighbors of each node, in euclidean déstasece used to learn the graph
structure from our complete data set. This graph structaetiven used as a basis to train



Figure 5:Euclidean Distance Rank

1) ~ 49.28476(y=17)

latitude: 42.14206(y:

6 8 10
longitude: -125.625(x=1) ~ -116.25(x=16)

a Bayesian network using conditional probabilities detifrem the observed frequencies.
We evaluated this Bayesian network by several methodst, Miesexamined subsets of
nodes known to be highly correlated. As an example, Tabléustihtes the sensitivity

of the measurement site at longitude 6, latitude 15 (6,1%)¢ovalue of its neighboring

parents, (6,14) and (7,15).

This is representative of all highly correlated nodes. riatBons are also present across
greater geographic distances within correlated compgsnelmt general, the conditional
probability tables in this propagation contain fewer zerobabilities (and thus are not
shown).

The second major approach utilized to examine the qualith@Bayesian network was
to examine the data likelihood. Figure 6 shows the log-lil@d of the data for each of
the original 16801 data samples. Despite construction@Biiyesian network from the
complete data set, the data at many time-points exhibitisimgly low log-likelihoods. We
expect this may be due to sub-optimal data partitioningsipbswith respect to seasonal
changes. Time permitting, we aim to further examine anyguokity in time of this log-
likelihood to establish partitions of the data. Initial datross-validation results do not
indicate significant network structure changes among nandiata samples. Additionally,
the log-likelihoods within a test set are very similar, iigt suggesting that our method
performs similarly across the data set.



Table 1:Marginal and Conditional Probabilities of Site (6,15)
value P((lat6,lon15) = value)
0.6060
0.0554
0.0814
0.1027
0.1012
0.0534
) (6,14) P((6,14(6,15), (7,15))
1 0.9882
0.0102
0.0016
0.0000
0.0000
0.0000
0.0000
0.0000
0.0044
0.0087
0.1004
0.8865
Il omitted values have zero probability.
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Figure 6:Daily Sample Log-likelihood
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5 Conclusions

Using our modified K-2 algorithm, we have been able to rapidiyd a Bayesian network
representative of rainfall in the US Pacific Northwest. Weoatonsider dependence be-
tween measurement sites using correlation coefficientsetisag/distances of time series.
Based on the pattern of correlation coefficients, we cangsem@dditional measurement
sites to get a higher prediction on the area. From the figucemwélation and Bayesian net-
work, we can conclude that Bayesian network appropriatglyasents the dependence of
measurement sites. Future directions include additioredliation and comparison of dis-
tinct network structures constructed from subsets of nreasent sites. While we sought
to examine the limited context of inference within singlmetsteps, the consideration of
temporal interactions, possibly using a dynamic Bayesetwork, may yield increased
accuracy and facilitate forecasting.
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