
모

The Optimized Physical Model
for Real Rover Vehicle

Jun-young Kwak

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213
junyoung.kwak@cs.cmu.edu

Abstract

This paper presents the way to select appropriate features for rover
vehicle model and to reduce the errors (differences) between two
different vehicle models. The fundamental idea for selecting features
is to compare the error rates when the specific group of features is
removed and to choose the best case. Based on selected features and
learning algorithm, I find the optimal coefficients and adjust the
system properties using those values. Results from a relevant
simulation experiment provide foundations to support and illustrate
the benefit of the devised ways. The paper concludes with several
promising directions for future research.

1 Introduction

Over the past few years, rover vehicles for Mars exploration have been rapidly
developed based on fundamental technologies. However, the measure and prediction
of the parameter related to a wheeled ground robot while driving is still complicated.
High levels of slip and friction can be observed on certain terrains and the specific
condition, which can lead to significant errors of the vehicle's movement, inability to
reach its goals, or, in the worst case, getting stuck without the possibility of recovery
[1]. The reduction of cost for analyzing the vehicle model and setting up some
experimental procedures is also getting an important issue. Current Mars rover
vehicles have a lot of parameters and properties and we have to consider select
relevant features in parameters to reduce the vehicles’ complexity and get the optimal
solution for exploration and navigation on the rough-terrain.

To safely perform tasks in unknown or complicated environments, learning algorithm
can be applied to navigation on the rough-terrain using different vehicle models.
Using an online learning method directly learns the mapping between two different
vehicle models and data through the experiment. The system can be trained by simply
driving through representative dataset. The optimal vehicle model that encodes
structure of the real rover platform represents the coefficients like suspension, friction
and max torque and similarity on the same terrain.

This paper provides the methods for selecting the optimal features in real dataset and
reducing the execution errors between two different vehicle models using learning
algorithm. Doing so provides extra information to the algorithm that allows it to
operate in more than just a naive manner using whole features in dataset. These
suggested techniques show improvements for the reducing whole error rates during
learning and execution procedures.

1 .1 Related work

Using structure to constrain problem. A limitation of the constrained method is that
predictions are made independently in each small patch of terrain, without including
any spatial context. This can cause problems when there is ambiguous feature data [3].
If the system considers each of these patches independently, it will give the same
ground estimate for both and get at least one of them wrong. This work relaxes the
strong assumption of independence between selected features through the inclusion of
spatial correlations.

Learning to predict slip for rover. Slip can be defined as the difference between the
different vehicles estimated by several factors. This work predicts the amount of slip
an exploration rover by learning from examples of traversing similar terrain. Learning
from examples allows the system to adapt to unknown terrains rather than using fixed
heuristics or predefined rules [2]. This works also consider slip learning in a nonlinear
regression framework. They describe a general framework to learn the functional
relationship between visual information and the measured slip using training
examples.

2 Approach

2 .1 Assumpt ions

In this work, I use two different simulators — CMU Vortex simulator and NASA JPL
ROAMs simulator (See Figure 1). These two simulators have their own vehicle
models, but the other parts like path planning algorithm is the exactly same. In this
paper, to simplify the problem I assume that the terrain condition and internal control
part of each vehicle model are the same. Based on this assumption, I concentrate on
finding factors making the execution errors between two simulators like tire friction,
slippery, suspension and max torque. For the path planning algorithm, I used
heuristically-guided RRT (hRRT) [4] algorithm to collect data and to test the vehicle
models.

Figure 1: Vortex and ROAMs simulator Figure 2: Collecting data using

vortex simulator

2 .2 Col lec t ing data

The data used in the paper was collected from two different simulators. In this work,
there are two different dataset and one is obtained from Vortex simulator and another
is obtained from ROAMs simulator. To obtain the data, I repeated generating the path
and storing vehicle information on the planned path (See Figure 2). After repeating 20
experiments, I got 798 data and each data consists of 59 features. These features
represent the physical vehicle model and include yaw of body, linear velocity, angular
velocity, quaternion of each part, curvature, current car position and current planned
position.

Features: Current car position(x, y, z), Current planned position(x, y, z), Yaw,
Curvature, Actual velocity, Quaternion of body(x, y, z, w), Quaternion of each
wheel(x, y, z, w) *4, Linear velocity of body(x, y, z), Linear velocity of each wheel(x,
y, z) *4, Angular velocity of body(x, y, z), Angular velocity of each wheel(x, y, z) *4

2 .3 Se lec t ing the opt imal f ea tures in datase t

2 .3 .1 Algor i thm

In this part, I explain the way to find optimal features (or parameters) in dataset with
AdaBoost algorithm (See Figure 3(a)). For selecting features, I use AdaBoost
algorithm because that makes the error low and help to reduce the accidental cases.
This algorithm provides the method for improving the accuracy of any learning
algorithm and uses weak algorithms for single rules. It also combines weak rules into
a strong learning algorithm by weighting weak learners. To apply AdaBoost algorithm
to this problem, I used linear classifiers (Naïve Bayes classifier) as a weak learner.

Figure 3: Used learning algorithm

I use the physical vehicle information as features and difference between planned
positions and current vehicle positions as the target information.

(1) Features (X): The physical vehicle model (59 features)

 Yaw of body, linear velocity, angular velocity, quaternion of each part, curvature,
current car position and current planned position

(2) Target (y): difference between the planned position and the current vehicle
position (execution error)

• In this case, to simplify the problem, I assign the class to the target
information. (}1,1{−∈iy)

2 .3 .2 Evaluat ion

As the criteria to select features, I compare error rates for each case. Basically, data
can be divided by some category and using this property I make different
combinations of features. The test for each case is performed with AdaBoost learning
algorithm and based on the error rate results I choose the feature sets having a high
error rate. If the important feature set, i.e. that feature set have a big effect on the
target data, is removed, the error rate for fitting and classifying become bigger. To
check more accurately, each error rates are compared with the case which all features
are used (base case).

• Di = w1 (ε1,i – b1) + w2 (ε 2,i – b2), where Di : weighted error difference, wi :
weight factor, ε 1,i : training error, ε 2,i : test error, bi : base error

• If weighted error difference is bigger than threshold value, that feature set is
selected. (This is because the big difference represents that that feature is
more important one.)

2 .4 Reduc ing the execut ion errors

Second part is to find the optimized learning algorithm to fit existing simulation
model to optimal physical one for Mars rover vehicle using selected features. In this
part, with two learning algorithms — Naïve Bayes classifier and SVM with
regularization (See Figure 3(b), (c)), I compare the performance in reducing errors
between two different model. Based on these experiments results, I find the optimal
coefficients to fit the existing model better to real vehicle model. To learn the target
data (execution error), slip of the rover vehicle is used. For the first step (see 2.4.1), I
predict the amount of slip and compare the error using two different classifiers. Based
on that result, the better classifier is selected and I find the optimal coefficient for the
function between slip and features. For the second step (see 2.4.2), using the selected
classifier I predict the target data (execution error) and find the optimal parameters for
the function between execution error and slip.

2 .4 .1 Compar ing two l earn ing a lgor i thms

2.4.1.1 Algorithms

For the first step, I compare two different learning algorithms — Naïve Bayes
classifier and SVM with regularization (See Figure 3) to learn and predict the amount
of slip using selected features in Part 2.3.

2.4.1.2 Finding the optimal coefficient for the function

Target (s): the amount of slip of vehicle

• The amount of slip s per wheel can be defined as a difference between the
velocity measured by the wheel and the actual velocity: s = wr – v [5]
(w: angular wheel velocity, r: the wheel radius, v: actual linear velocity)

• In this case, to simplify the problem, I assign the class to the target
information. (}1,1{−∈is)

Based on information I find a linear equation using non-parametric algorithm (Locally
weighted linear regression).

∑

∑

=

=

−=

+=+++++=

n

i

n

i

i
T

ii

iinnii

yxwJ

xxxxs

1

2

1

)(
2
1)(subject to

...... 0110

θθ

θθθθθθ

2 .4 .2 Predic t ing the execut ion error and f ind ing the opt imal
parameter to reduce the error

For the second step, I predict the target data (execution error) with selected learning
algorithm and find the optimal parameter for the function of the slip and execution
error using locally weighted linear regression. (See 2.4.1.2)

Target (y): difference between the planned position and the current vehicle position
(execution error)

 To assign the class to the target data, I use the same rule of Part 2.3.1.

3 Experimental results

3 .1 Exper iment se tup

This research is motivated mainly by planetary rovers, such as The Mars Exploration
Rover (MER), so I used Vortex simulator and ROAMs simulator as testbed. Vehicle
models in both simulators are made based on real rover platform like Rocky8 and
FIDO. In this experiment, the vehicle speed in the simulator is set to 5km/h between
planned nodes. I tested the experiments using MATLAB to analyze and plot the graph.

3 .2 Se lec t ing the opt imal f ea tures in datase t

For AdaBoost algorithm, I chose 100 as an iteration number and did 10-fold
cross-validation on the dataset. I tested different 12 cases with various combinations
of features. Figure 4(a) is the plot of the error rate when all features in dataset are used.
As shown in Figure 4, when AdaBoost algorithm with linear classifier is applied to
this problem, the error rate is about 0.25 for the training data.

To select the feature set, I use the evaluation equation Di = w1 (ε1,i – b1) + w2 (ε 2,i – b2),
where b1 = 0.2392, b2 = 0.2781, w1 = 0.3, w2 = 0.7, threshold = 0.083. Figure 4(b) and
table 1 represent the experimental results.

Figure 4: Error rates for selecting features

As shown Table 1, I can choose five feature sets (cells filled by orange color) which
are bigger then threshold value (0.083). This result means if those five features sets
are removed, it is not enough to learn target data using remaining features.

• Selected Features: 21 among 59 features.

 yaw, actual velocity, quaternion of body (x, y, z, w), linear velocity of
wheels (x, y, z) * 4, angular velocity of body (x, y, z)

3 .3 Reduc ing the execut ion errors

3 .3 .1 Compar ing two l earn ing a lgor i thms

(1) To compare two different two learning algorithms, I did 20-fold cross-validation
on the dataset — Target(s): slip, X: selected features. Figure 5 is the plot of the
accuracy when Naïve Bayes and SVM are applied to the dataset. For the SVM
(regularization), I use , C=1. 1010−=λ

Figure 5: Accuracy with two

learning algorithms

*1 In Table 1, each CASE means removing each term in the table cell. For example,
Nothing means removing nothing in features (i.e. using all features).

*2 In Table 1, RMS errors are root-mean-square errors of four wheels.

As shown in Figure 5 and Table 2, when linear SVM with regularization (,
C=1) is used, I can get higher accuracy rates than Naïve Bayes classifier. Based on this
result, I select linear SVM to predict the target data (execution error) using slip (Part
3.3.2).

1010−=λ

(2) To find the function(s), I use locally weighted linear regression. Weight values can
be obtained from the training result with SVM and as shown in Table 2, case 7 is the
best case, and thus I use the weight value of that case. Step size is and threshold
is . Table 3 represents the optimal parameters for the function s (slip) of Part
2.4.1.3.

510−

410*5.0 −

3 .3 .2 Predic t ing the execut ion error and f ind ing the opt imal
parameter to reduce the error

(1) Using linear SVM with regularization (, C=1), I also did 20-fold
cross-validation on the dataset — Target(y): execution error, X: slip(s). Figure 6 is the
plot of the accuracy when linear SVM is applied to the slip dataset. To verify the result,
I compared the test error based on slip with two random cases. Random case1 has the
very similar features to the amount of slip

1010−=λ

)41(≤≤− X and random case2 has totally
randomly generated data. (The data for two random cases are generated using
MATLAB rand function.)

As shown in Figure 6 and Table 4, we can know that slip value is more correlated to
target data (execution error) than other random case. This means if we can find the
optimal model for slip, we can also find the optimal model for execution error using
slip value.

(2) As Part 3.3.1, to find the function(y), I use locally weighted linear regression. Step
size is and threshold is . Table 5 represents the optimal parameters for the
function y (execution error).

510− 710−

Figure 6: Accuracy rate for

predicting the target value

4 Discussion and conclusion

I have proposed a method to learn to select relevant features and predict slip and
execution error using selected one. This paper makes a step forward in modeling and
learning in complex environments using real data without involvement of detailed
mechanical models. For selecting features, I used AdaBoost algorithm because that
makes the error low and help to reduce the accidental cases. Using linear SVM with
regularization, I also showed that slip prediction results can be directly incorporated
into the execution error. Based on the results, we can conclude if we want to find the
optimal model of vehicle to reduce the execution error, we can find the optimal slip
model using the proposed method to reduce the number of parameters (features).
Using the best fitted function (and its coefficients) and the slip model, we also can find
the optimal model for execution error of vehicle. I demonstrated on real datasets how
this method can be used to predict the slip and execution error and find the optimal
model.

References

[1] A. Angelova et al. (2006), Learning to Predict Slip for Ground Robots, IEEE International
Conference on Robotics and Automation.

[2] C. Wellington & A. Stentz. (2003), Learning Predictions of the Load-Bearing Surface for
Autonomous Rough-Terrain Navigation in Vegetation, International Conference on Field and
Service Robotics.

[3] B. Sofman, E. Lin, J. Bagnell, N. Vandapel & A. Stentz. (2006), Improving Robot
Navigation Through Self-Supervised Online Learning, Robotics: Science and Systems.

[4] C. Urmson & R. Simmons, (2003), Approaches for Heuristically Biasing RRT Growth,
IEEE/RSJ International Conference on Intelligence Robots and Systems.

[5] Wong J., (1993), Theory of Ground Vehicles, John Wiley & Sons Inc..

	1 Introduction
	1.1 Related work

	2 Approach
	2.1 Assumptions
	2.2 Collecting data
	2.3 Selecting the optimal features in dataset
	2.3.1 Algorithm
	2.3.2 Evaluation

	2.4 Reducing the execution errors
	2.4.1 Comparing two learning algorithms
	2.4.1.1 Algorithms
	2.4.1.2 Finding the optimal coefficient for the function

	2.4.2 Predicting the execution error and finding the optimal parameter to reduce the error

	3 Experimental results
	3.1 Experiment setup
	3.2 Selecting the optimal features in dataset
	3.3 Reducing the execution errors
	3.3.1 Comparing two learning algorithms
	3.3.2 Predicting the execution error and finding the optimal parameter to reduce the error

	4 Discussion and conclusion
	References

