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Abstract

Dialog act classification or tagging is the task of assigning labels such as
“question”, “assertion”, “positive feedback” and “negative feedback” to
the turns in a dialog. In this project, we study the dialog act classifica-
tion task as applied to human-human tutoring dialogs in the domain of
thermodynamics. We initially establish a baseline by posing the task as
a classification problem and applying three supervised machine learning
methods. We then view the task as a sequential labeling problem, to make
use of previous dialog act labels for predicting future labels and compare
the performance of sequential labeling algorithms with the baseline ac-
curacy. The best performing sequential algorithm shows 5.59% improve-
ment in macro-averaged accuracy over the best baseline algorithm.

1 Introduction

Dialog Act (DA) classification or tagging is the task of assigning labels to each of the turns
of the speakers (or in general, agents in the case of textual communication such as chat) in
a dialog. The set of labels to be assigned is decided in advance and usually corresponds
to some high level semantic concepts such as “question”, “answer”, “offer”, “acceptance”,
which can be used to perform a shallow semantic analysis of the dialog. DA classification
can be useful in tasks such as summarization of dialog, where for example one might be
interested in identifying the key questions raised in a meeting (multi-party dialog) and the
possible set of answers [1].

Tutoring domain dialogs share many characteristics of dialogs in general, such as short
responses and informal non-expository language. Additionally, the DAs are customized
to suit the specific domain. For example, DAs such as “positive response” and “negative
response” are usually included in the set of DAs since they can help assess student learning.

2 Related Work

Dialog Act classification is a well-studied problem in the literature, particularly in the spo-
ken dialog domain. Research has also been done in applying sequential learning algorithms
such as Hidden Markov Models (HMMs) to the problem. Here we briefly discuss some of
the related work and also previous work related to topic segmentation of the dialog corpus
that we use for our experiments.



Surendran and Levow [2] have applied Support Vector Machines (SVMs) and HMMs to the
problem of DA classification in the a corpus of two-speaker task-oriented dialogs involving
map directions given by a “giver” to the “follower”. This is in some respect similar to
our dialog corpus where a human tutor is guiding the student towards the solution to a
thermodynamics problem, except the goal in tutoring dialog is also to evaluate the student
understanding, rather than simply providing directions. Since theirs is a spoken dialog
corpus, they have made use of acoustic as well as textual features for the task and shown
slight improvement in classification accuracy using sequential HMM labeling.

Galley et. al. [3] have applied Bayesian Networks to the problem of predicting agreement
and disagreement in a multi-party dialog corpus of research team meetings at the Inter-
national Computer Science Institute. They initially apply maximum entropy modeling to
predict adjacency pairs in the dialog, which are essentially pairs of coherent correspon-
dences between two speakers – such as a question and an answer. They then use these
adjacency pairs to design dependencies among previous and current contributions in the di-
alog. Their results suggest improvement in classification of agreements and disagreements
using knowledge of such dependencies.

Arguello and Rosé [4] have used the tutoring domain corpus that we use in our experiments
to perform automatic topic segmentation of dialog, which involves predicting the start of a
new topic or a topic-shift in the tutoring dialog. The manually annotated topics included
general ones such as greetings, initialization, general thermo concepts as well as task-
specific ones such as sensitivity analysis and regeneration. The features employed in their
experiments were lexical features such as unigrams and bigrams, and syntactic features
such as Part-of-Speech bigrams. They compared their system to several state-of-the-art
systems for segmentation of expository text and demonstrated significant improvement.

3 Data

The data (thermo-study corpus) is a corpus of student-tutor (human-human) dialogs in
which the students worked on an optimization problem for the thermodynamics domain,
via chat software. This is a locally collected corpus consisting of 22 student-tutor dialogs.
Each dialog is composed of multiple turns from the student and the tutor, for a total of 4794
turns. The corpus has been annotated (mostly manually) to include six features for each
turn. Briefly, three of them are as follows (with their possible values in parentheses):

• Agent: Automatically logged via chat software. (Tutor, Student)
• Action: The dialog act, classified as open response question (1), closed response

question (2), check for understanding by tutor (3), assertion (4), negative response
(5), positive response (6), direction or command (7), meta statements (8) and other
(0).

• Exchange: A sequence identifier given to a group of turns in the dialog that form
one dialog exchange (an Initiative-Response-Feedback segment).

Further details about the other features and the coding scheme used for the annotation can
be found in the next section and also online1.

4 Method

In this project, as in related literature, we initially treat the DA tagging as a supervised
classification problem and then as a sequential labeling problem. The motivation for ap-
plying sequential learning to this particular tutoring dialog corpus is based on an empirical

1http://www.cs.cmu.edu/∼maheshj/Regan-CodingScheme.doc



Table 1: Transition table showing the number of times the dialog acts listed along the
columns follow the dialog acts listed along the rows, in the thermo-study tutoring dialog
corpus of 22 dialogs, 4794 turns. Bold values indicate the maximum in each row.

0 1 2 3 4 5 6 7 8
0 258 3 24 6 20 3 13 23 5
1 1 17 21 0 62 5 1 8 2
2 9 7 106 4 220 22 112 85 8
3 3 3 8 1 22 4 52 4 1
4 22 34 148 58 700 22 297 162 16
5 7 0 16 1 36 16 15 29 4
6 16 31 121 12 229 19 148 279 24
7 31 20 118 15 159 30 221 472 11
8 3 2 11 1 13 3 21 15 21

analysis of DA transitions from one label to another. Table 1 lists the number of times the
DAs listed along the columns follow the DAs listed along the rows, in our entire corpus of
4794 turns. The table shows that certain DAs are more likely to follow a given DA, than
others. For example, negative response (5) is more likely to be followed by an assertion (4)
or a direction/command (7) than others. This is quite intuitive since a negative response by
the tutor is likely followed by some sort of informative assertion or directive statement by
the tutor again. Based on this empirical analysis, we hypothesize that the use of predicted
DA labels of previous turns will improve accuracy on our DA prediction task.

4.1 Features

We experiment with the following types of features:

Lexical (lex): We use unigrams (single words) and bigrams (two-word sequences) as bi-
nary features, while skipping stopwords such as articles and prepositions and stemming the
words to their root morphological forms. Unigrams or bigrams that occur fewer than five
times in the training set are rejected. We also employ a set of 19 punctuation features such
as period, comma, semi-colon and colon. Additionally we include the normalized length
of a turn as a numeric feature.

Syntactic (syn): We use Part-of-Speech bigrams as pseudo-syntactic features. No sto-
plisting or stemming is done for identifying Part-of-Speech tags, but the frequency cutoff
criteria of five (as in the case of unigrams and bigrams) applies.

Meta (met): In addition to the automatically extracted set of features above, we also have
additional meta-level features for each of the turns (most of which are manually annotated).
These are as follows:

• Agent: This can take the value T for Tutor or S for Student. This is automatically
tracked via the chat software.

• Depth: This is a binary feature indicating whether or not a turn is an explanation.
This has been manually annotated.

• Control: This indicates the type of a turn in terms of the conversational Initiation-
Response-Feedback theory by Sinclair and Coulthard [5]. It can take the following
values: D–dialog initiation, T–task initiation, R–response, F–feedback, or the fol-
lowing combinations of two of the above four – R/D, R/T, F/D and F/T. This is a
manually annotated feature.

• Focus: Indicates whether the speaker’s contribution is self-oriented (S) or other-
oriented (O). Manually annotated.

• Exchange: This is a binary feature derived from the exchange attribute described
in the Data section above. It indicates whether or not a turn is the start of a new



exchange. The exchanges have been manually annotated.

4.2 Machine Learning Algorithms

For the initial baseline experiments involving supervised classification, we have experi-
mented with the Decision Tree learner, the Naı̈ve Bayes classifier and SVMs. The reason
to choose these three algorithms is that all of them have been shown to work well on natu-
ral language processing tasks in previous literature. We have used the implementations of
these algorithms from the MinorThird [6] package.

For sequential learning, we have made use of two of the sequential learning algorithm
implementations available in MinorThird – Conditional Random Fields [7] and Collins’
Perceptron Learner [8].

5 Experiments

The goal of our experiments is twofold – (1) to perform a feature engineering exercise for
the task of DA classification by examining if use of features from previous turns improves
accuracy (in other words, are the features of previous turns good proxies for predicted
labels of previous turns, as in sequential learning?), and (2) to compare the accuracy of
classification and sequential learning algorithms.

5.1 Baseline Experiments

We plan to make use of the exchange boundaries to limit the previous context in our se-
quential experiments. However, using manually annotated exchange boundaries introduces
a bottleneck in the automation of this method. In order to try and avoid this, we performed
experiments to automatically predict the exchange boundaries in our corpus. The two sets
of features we have employed are: (1) lexical + syntactic, and (2) lexical + syntactic + meta
(excluding the exchange feature).

For our evaluation methodology, we have employed a leave-one-dialog-out method in
which each one of the 22 dialogs is employed as a test set while the remaining 21 are
used as training set. To account for the variable size of our test sets, we report both macro-
average accuracy and micro-average accuracy numbers. Macro-average accuracy is the
accuracy obtained by averaging the 22 accuracy values obtained on the 22 test sets, while
micro-averaged accuracy is calculated by counting the total number of correctly classified
turns across all the 22 test sets and then dividing by the total number of turns (4794).

For dialog act classification, we have employed three sets of features: (1) lexical + syntac-
tic, (2) lexical + syntactic + meta (excluding exchange) and (3) lexical + syntactic + meta
(including exchange, manually annotated).

5.1.1 Exchange Prediction Results

Table 2 shows the results on exchange boundary prediction. The average majority class
baseline for this task is 0.775 since 3717 turns out of the total 4794 are not exchange
boundaries. So even if a classifier always predicts a turn as “not an exchange boundary”,
the micro-average accuracy will still be 0.775. The results are in agreement with those
in [4], showing that automatic exchange boundary prediction in dialog is a fairly hard
task. It can be observed however that the meta-features indeed seem to increase accuracy
significantly above the majority baseline.



Table 2: Accuracy on exchange boundary prediction task.

Classifier
Decision Tree Naı̈ve Bayes SVM

Feature Set Macro Micro Macro Micro Macro Micro
lex+syn 0.769 0.778 0.678 0.689 0.786 0.790

lex+syn+met 0.800 0.803 0.745 0.751 0.824 0.826

Table 3: Baseline accuracy on DA prediction task.

Classifier
Decision Tree Naı̈ve Bayes SVM

Feature Set Macro Micro Macro Micro Macro Micro
lex+syn 0.610 0.627 0.675 0.691 0.644 0.659

lex+syn+met(no exch) 0.730 0.732 0.751 0.761 0.706 0.707
lex+syn+met(exch) 0.730 0.732 0.752 0.763 0.705 0.706

5.1.2 Baseline Results

Table 3 shows the results for DA classification. The majority baseline for DA classifica-
tion is 0.305, with the DA=4 (assertion) being the most frequent class. The naı̈ve Bayes
classifier with the full feature set yielded the best accuracy values (bolded in Table 3). A
formal statistical significance analysis has not been done for our results, but in general the
accuracies seem significantly higher when using the “Meta” feature set (with or without
exchange).

5.2 Features from Previous Turns

In addition to the three feature sets for DA classification mentioned in the baseline exper-
iments section, for each of them we also generated three more feature sets that included
the features from previous 1, 2 and 3 turns. At the implementation level, the features from
the N th previous turn were prefixed with “PREVN ” so as to distinguish them from the
features of the current turn. For the “lexical + syntactic + meta” feature set with exchanges,
if any of the previous N turns crossed an exchange boundary, then its features were not
added to the current turn.

5.2.1 Previous Turn Features Results

Table 4 shows results of using the augmented feature sets. As can be observed, the accu-
racy using these augmented feature sets was worse than without using them, for most of
the cases. Decision trees were fairly robust to the introduction of these new features and
seemed to pick the right subset of features among the larger set. However, naı̈ve Bayes
classifier and SVMs suffered a consistent degradation in performance with the introduction
of these augmented set of features. We therefore hypothesized that the features from previ-
ous turns were overall adding more noise than information and performed experiments with
feature selection using information gain criterion, choosing the top 1000 features from each
augmented set. The number 1000 was selected based on the fact that our original feature
space size was close to 1000. However, the results in our feature selection experiments too
showed an accuracy degradation pattern similar to the entire set of augmented features in
Table 4. This suggests that the features being added are not merely noisy for our particular
task, but strongly misleading.



Table 4: Accuracy on DA prediction task using features from previous 1, 2 and 3 turns
(indicated in parentheses after the feature set name).

Classifier
Decision Tree Naı̈ve Bayes SVM

Feature Set Macro Micro Macro Micro Macro Micro
lex+syn(1) 0.609 0.627 0.632 0.644 0.593 0.612
lex+syn(2) 0.607 0.625 0.598 0.609 0.564 0.578
lex+syn(3) 0.605 0.623 0.570 0.582 0.551 0.567

lex+syn+met(no exch)(1) 0.730 0.733 0.706 0.715 0.681 0.686
lex+syn+met(no exch)(2) 0.730 0.732 0.674 0.681 0.662 0.670
lex+syn+met(no exch)(3) 0.731 0.733 0.641 0.647 0.659 0.664

lex+syn+met(exch)(1) 0.747 0.757 0.706 0.717 0.687 0.690
lex+syn+met(exch)(2) 0.747 0.757 0.662 0.672 0.668 0.674
lex+syn+met(exch)(3) 0.745 0.755 0.636 0.647 0.658 0.664

Table 5: Accuracy on DA prediction task using sequential learning algorithms.

Classifier
CRF Collins’ Perceptron

History Size Macro Micro Macro Micro
1 0.740 0.749 0.788 0.792
2 0.671 0.678 0.794 0.799
3 - - 0.793 0.799

5.3 Sequential Learning

Both CRFs and Collins’ Perceptron Learner have two “tunable” parameters among others:
(1) the history size, which is the number of previous labels considered while predicting the
current label and (2) the number of iterations through training data. The parameter that we
varied was the history size, keeping everything else to its default value in the MinorThird
implementation. Note that this variation in history size is not done using a separate vali-
dation set, which would be the principled way of selecting the optimal history size for this
dataset. However, our goal here is not choosing or reporting the optimal history size but
comparing the accuracy of classification versus sequential learning algorithms under simi-
lar conditions. With CRF, we used a history of 1 and 2 labels2. For the Collins’ Perceptron
Learner, we used a history of 1, 2 and 3 labels. We used the full feature set of lexical +
syntactic + meta features with manually annotated exchange boundaries. The history of
labels of previous turns does not cross an exchange boundary.

5.3.1 Sequential Learning Results

Table 5 shows the results for the two sequential algorithms with different history sizes.
Collins’ Perceptron with a history size of 2 gave the best accuracy on our task, as measured
by macro-averaged and micro-averaged accuracy values. With a history of 3, there was
only a slight decrease in the macro-averaged accuracy of Collins’ Perceptron. We note
again that these experiments do not suggest that a history size of 2 is optimal for this
dataset, that will have to be evaluated using a separate validation set. All of the results
from Collins’ Perceptron learner are well above the best baseline accuracy values of the
naı̈ve Bayes classifier. Contrary to this behavior however, the accuracy of CRF learner did
not outperform the best baseline accuracy. Furthermore, the accuracy degraded when the
history size was increased from 1 to 2.

2We could not complete in time the experiments for history of 3 labels with CRFs.



Table 6: Confusion matrix for the best naı̈ve Bayes classifier.

0 1 2 3 4 5 6 7 8
0 95 7 38 2 120 8 72 19 10
1 1 53 48 7 6 2 0 0 0
2 13 17 423 15 82 1 4 15 3
3 1 1 25 65 1 1 1 1 2
4 33 4 22 0 1285 12 27 64 14
5 8 0 8 0 42 45 14 5 2
6 25 1 7 2 53 13 772 5 2
7 6 3 17 1 150 1 2 893 5
8 8 0 10 1 42 0 0 6 25

Table 7: Confusion matrix for the best Collins’ Perceptron Learner.

0 1 2 3 4 5 6 7 8
0 156 6 26 6 71 8 66 19 13
1 0 70 42 1 2 2 0 0 0
2 13 30 449 25 25 8 7 13 3
3 1 1 27 67 1 0 0 1 0
4 21 2 27 0 1213 30 64 75 29
5 4 1 6 0 31 59 19 2 2
6 19 0 2 1 25 6 823 4 0
7 7 2 12 0 76 0 8 963 10
8 9 2 7 0 32 1 3 8 30

5.4 Observations, Discussion and Error Analysis

The observation that CRFs performed worse than the naı̈ve Bayes baseline is quite counter-
intuitive, especially given that the Collins’ Perceptron learner seems to improve perfor-
mance significantly. To analyze the types of errors made by the best naı̈ve Bayes model,
the best Collins’ Perceptron model and the best CRF model, Tables 6, 7 and 8 show the
confusion matrices after combining the results of our leave-one-dialog-out cross-validation
experiments using these models. The entries along the diagonal are the correctly classified
instances (in bold) and the ones in underlined italics are the most frequent misclassifica-
tions for each label. One trend that can be prominently seen is that in most cases, the most
frequent erroneous prediction is 4 (assertion), which is not surprising given that it is the
majority class. Both the sequential learning algorithms show a decrease in this tendency as
compared to the naı̈ve Bayes classifier, by reducing the number of erroneous predictions
in that class. However, even the number of correct predictions of 4 decreases for both of
them as compared to naı̈ve Bayes. Except for 4, Collins’ Perceptron consistently improves
number of correctly classified examples for each class. This however does not hold for the
CRF learner. A decrease in number of correctly classified examples is observed for classes
2 (closed response question), 3 (check for understanding), 4 (assertion), and 6 (direction
or command). In terms of the per-class F1 measure (which can be calculated from the
confusion matrices above), the best improvement was in classifying 0 (other). While this
applied to the CRF learner too, its improvement was lesser than that of Collins’ Perceptron
due to its low precision – it tended to classify many of the turns as belonging to the “other”
category, when they were not. This can be observed by comparing the first columns of the
three confusion matrices.

6 Conclusions

We have applied 2 sequential learning algorithms, Conditional Random Fields and Collins’
Perceptron Learner to the task of dialog act classification. Our baseline accuracy was that



Table 8: Confusion matrix for the best CRF Learner.
0 1 2 3 4 5 6 7 8

0 163 8 21 2 76 11 48 21 21
1 1 67 44 2 2 1 0 0 0
2 33 42 403 26 34 7 3 20 5
3 7 0 23 64 0 1 1 2 0
4 70 0 44 1 1130 26 57 99 34
5 5 1 6 1 32 59 14 4 2
6 71 0 6 1 28 8 763 3 0
7 23 1 13 1 111 3 5 911 10
8 6 0 8 1 29 1 3 12 32

of the naı̈ve Bayes classifier (chosen among Decision Trees, naı̈ve Bayes classifier and
Support Vector Machines). Sequential learning algorithms make use of predicted labels
of previous turns for predicting the current label. We experimented with history sizes of
1 and 2 with CRFs and history sizes of 1, 2 and 3 with Collins’ Perceptron Learner. The
best performing algorithm was Collins’ Perceptron Learner with history size of 2 (and also
history size of 3, with a negligible decrease in macro-averaged accuracy value), with an
improvement of 5.59% over the best baseline.
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