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Abstract

This report presents a technique to enhance existing methods of decoding cogni-

tive states from brain imaging data. The concept is to take the set of voxels in the

image and reduce the resolution in each dimension by an optimal factor as deter-

mined in the training process. Additionally, the set of voxels are split into smaller

subsets of voxels that are localized in time and space. By training classi�ers sepa-

rately on each subset of voxels, and merging the outputs of these classi�ers to form

a �nal decision, I have demonstrated a signi�cant improvement over the case where

the entire set of voxels is used in a single classi�er and at its orginal resolution.

1 Introduction

The goal of this project is to use fMRI images of brain activation to determine whether
a subject is reading a sentence or viewing a picture. These images are taken in 3D and
at multiple time intervals during which the subject is performing the task. This problem
is highly relevant to help provide insight into the nature of cognitive processes in the
brain.

This project attempts to enhance existing work by considering the e�ects of localization
and resolution in both time and space. Speci�cally, I divide the images into distinct
regions in space and time and look at each region separately. I also look for the optimal
resolution in time and in each of the spatial dimensions. Hence, the main aspect of this
project is �nding the best regions and the best resolutions to maximize classi�cation
accuracy.

The outline of the report is as follows. Section 2 provides more details on the dataset and
the speci�cs of the problem. Section 3 covers some related work on the topic. Section 4
describes the proposed method, the reasons behind it, and the algorithms that are used.
The experimental results are then presented in Section 5.

2 Problem de�nition

The data set contains six di�erent subjects. For each subject we have 40 sets of fMRI
images that were taken when he or she was reading a sentence, and another 40 sets of
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fMRI images taken when he or she is viewing a picture. The goal is to design a classi�er
to correctly identify which sets of images were taken when the subject was reading a
sentence, and which were taken when the subject was viewing a picture.

Each set of fMRI images contains 16 3D images, which are spaced every 500msec in
time. Each 3D image contains up to 64 x 64 x 8 voxels. Each image also has regions of
interests (ROIs) de�ned on it, which correspond to speci�c anatomic areas of the brain.

The classi�er is trained using ten-fold cross-validation, that is, it is trained on 36 sets of
images and tested on the remaining 4. The test images are then rotated. Note that a

separate classi�er is trained for each subject.

3 Related work

Mitchell et al have employed several classi�ers for this task, including Gaussian Naïve
Bayes (GNB), Support Vector Machine (SVM), and Nearest-Neighbor classi�ers[1]. In
the absence of feature selection (ie. with all voxels being used as features), GNB and
SVM were the most successful classi�ers, achieving an accuracy of 66%. The introduction
of feature selection improved accuracy to 82% (GNB) and 89% (SVM). The feature
selection was based on the activity of the voxels, by comparing the activation of voxels
while a task was being performed with their activation while the subject was at rest.
This comparison was done with a t-test, and the voxels with the greatest t-statistic are
chosen by the feature selection process. Note that the results from my project and cannot
be directly compared with the one mentioned here, because I only had data for 6 of the
13 subjects that were used.

A detailed report that speci�es the classi�cation accuracy on individual subjects can
be found in [2]. This allows a more direct comparison of my classi�er with previous
work. This report also recommends focussing on speci�c ROIs. The recommended set
of 7 ROIs is {'CALC', 'LDLPFC', 'LIPL', 'LIPS', 'LOPER', 'LT', 'LTRIA'}. Another
recommended subset of only 4 ROIs is {'CALC', 'LIPL', 'LIPS', 'LOPER'}. Some of my
experiments use all of the ROIs, some use the subset of 7 ROIs, and some use the subset
of 4 ROIs.

4 Proposed method

4.1 Overview

The proposed method is to use resolution and localization to improve the accuracy of the
GNB. The �rst aspect involves determining the optimal resolution for each dimension in
space and time under which to train the GNB. The voxels are reduced to this optimal
resolution by averaging them together along the relevant dimension. The second aspect
of the method is to divide the set of voxels into several smaller localized subsets and to
train a separate GNB on each of these localized subsets of voxels. The resulting decisions
from each classi�er are then combined through a weighting procedure. We denote the
term classi�cation bank for this set of individual classi�ers, each designed for a separate
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subset of voxels, and each with a weighting that allows their outputs to be combined to
yield an overall decision. Thus, the process of designing a classi�cation bank involves 1)
choosing the resolution under which it will operate, 2) choosing the subsets of voxels to
assign to each classi�er within the bank, 3) choosing the weightings for each classi�er
within the bank, and 4) training these (GNB) classi�ers.

4.2 Intuition

Presently the GNB uses the highest available resolution, that is, it uses all of the voxels.
There are two possible advantages to lowering the resolution in any given dimension.
First, voxels at lower resolution will have less noise. The bene�ts of reduced noise may
outweigh the advantages of a high resolution, particularly given that we do not know if
the high frequency information is useful anyway. Second, the GNB assumes conditional
independence between all voxels. This assumption is unlikely to be true. Reducing the
resolution the number of conditional independence assumptions that we need to make.
For example, a voxel is highly correlated in time. By removing all time resolution (ie. by
taking the average value of a given voxel in all time frames), we remove any requirement
of conditional independence between voxels in successive time frames. The e�ect of
averaging all voxels together over time was found to improve classi�cation accuracy by
over 10%.

There are also two reasons behind dividing the overall set of voxels into smaller localized
subsets of voxels. The �rst relates to conditional independence again. Voxels that are
placed into di�erent subsets do not have to be conditionally independent. Hence, if we
do not think that a voxels are conditionally independent in the time dimension, we can
simply place the voxels in each time frame into a di�erent subset. This was found to
give a 6% improvement in classi�caiton accuracy. The second reason for this localization
is that it provides an alternative form of feature selection. It is probable that voxels
in certain regions in space (and possibly time) do not provide useful information, and
rather serve only to add noise to the system. A common feature selection technique is
to remove any voxels that do not seem to be assisting with classi�cation on the training
set. However, with localized subsets, we can remove the in�uence of an entire group of
voxels. Such a method of feature selection may be less vulnerable to noise.

4.3 Algorithm Overview

As mentioned earlier, to create the best classi�cation bank we need to choose 1) the opti-
mal resolution and localized subsets of voxels on which to train the individual classifers,
2) the weightings for each individual classi�er in the bank, and 3) we need to train these
individual classi�ers. The training and testing process requires a nested cross validation
scheme using three loops as explained below:

4.3.1 Outer loop

In the outer loop we split the full dataset into a training and testing set. The training
set is used to choose the ideal classi�cation bank (ie. choose the optimal resolution and
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subsets of voxels) and also to train this classi�cation bank. The result is then tested using
the testing set. With all of these loops, we rotate the testing set (ie. cross validation) to
maximize the use of our limited data.

4.3.2 Middle loop

The middle loop is used to choose the best classi�cation bank. The training dataset is
further split into a mini-training set and a mini-testing set. On the training set we train
several di�erent classi�cation banks, ie. banks with di�erent combinations of resolutions
and localized subsets. The process for choosing these combinations is outlined in Section
5.2. We must now determine which of these classi�cation banks is the best. To do
this, we take our trained classi�cation banks and test them on the mini-testing set. The
bank with the highest accuracy is chosen, and this bank is returned to the outer loop.
As a possible extension to this method, we could actually create a �super-bank� that
was itself a weighted combination of individual classi�cation banks. In other words,
instead of choosing the best classi�cation bank, we would use all of them but with
di�erent weightings assigned to each of them. However, this would raise computational
complexity considerably.

4.3.3 Inner loop

The inner loop is used to actually train the classi�cation bank. The data set is split yet
again into a training and testing set. In the training set, we train individual classi�ers for
each of the localized subsets of voxels. These classi�ers are then tested on the testing set.
The challenge is now to choose a weighting for each classi�er so that the �nal output
of the classi�cation bank is a weighted combination of the outputs of each individual
classi�er. A natural choice might be to choose weights that optimize accuracy on the
training set using an iterative method. However, instead I chose to use a least-squares
method which is explained in more detail in the next section. This method gave a similar
accuracy on the testing set to that of an iterative method, and had the advantage that
it is closed-form and very fast. This computational e�ciency is an important advantage
because the weighting procedure takes place inside the inner loop, and is thus performed
many many times.

4.4 Algorithm details and extensions

4.4.1 Process for training the weights

The algorithm for computing the weights is given a set of training examples to use for
this task. For each training example we divide the voxels into their approriate subsets.
We then use a portion of the training examples to train a separate GNB for each subset
of voxels, and test each GNB on the remaining portion of the examples. When we test
a GNB, two numbers are returned for each test example, representing the probabilities
that the subject was reading a sentence or viewing a picture. We de�ne the output of the
GNB as the latter number subtracted from the former. Hence a positive output signi�es
that the subject was reading a sentence, and a negative output signi�es that the subject
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was viewing a picture. By performing cross-validation, we end up with GNB outputs
for every example in the set. We have a di�erent output for each of the localized voxel
subsets in the set. We arrange these outputs into a data matrix A where the number
of rows equals the number of training examples, and the number of columns equals the
number of voxel subsets. We now create a target column vector t which has a length
equal to the number of training examples and entries of 1 if the subject was reading a
sentence and −1if the subject was viewing a picture. By solving the equation Aw = t
with a least-squares algorithm, we obtain a column vector w which contains the optimal
weights for each localized classi�er.

We make one extension to this method. The least-squares solution will often contain
weights that are negative. This is somewhat nonsensical because it implies that the
GNB classi�er for the relevant voxel subset was actually doing worse than the random
guess. If this occurs, we assume that the classi�er is over�tting the data, and to solve
this problem we remove the relevant voxel subsets from the classi�cation bank. We then
retrain the weights using the equation Aw = t, but this time without the outputs relating
to the aforementioned voxel subsets.

This latter extension made a signi�cant improvement to results, and there may be room
for further improvement here by also removing voxel subsets with a positive but very
small weighting. In e�ect, we are performing a type of feature selection here, but on a
more global level than that mentioned in the related work.

4.4.2 Rapid mode

The algorithms for testing this classi�er took a long time to run. This is a result of
the three nested loops: the outer being used to ensure a true separation of training
and testing data, the middle being used to choose the best classi�cation bank (ie. the
best resolution/localization scheme), and the inner loop being used to train the weights.
These last two loops can actually be combined if we use the same set of images to train
the weights as to choose the best classi�cation bank. Such a procedure is not entirely
valid because we will be training the weights on data that is later used to choose the
classi�cation bank. However the speed-up is very signi�cant. Note that this procedure
does not in any way compromise the validity of the �nal result. The outer loop, which
creates the initial split between training and testing data, is still left intact.

The e�ect of using rapid mode was a reduction in �nal accuracy of around 1%, as reported
in Section 5.3, but a tenfold reduction in runtime.

5 Experiments

5.1 Conditions

• All classi�cation banks are trained for a single subject. In cases where an average
accuracy is given, this accuracy will be averaged across all six subjects, however
each of the six subjects would have had its own classi�cation bank.
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• The results cited in the related work generally used feature selection, choosing
voxels with high activity compared to when at rest. None of my experiments use

feature selection.

• All experiments are performed with ten-fold cross validation.

5.2 Procedure

The �rst stage in the training process is to choose an optimal voxel resolution in each
dimension, and to choose how to split the voxels into localized subsets. The di�culty
with this stage is that there are a large number of possible combinations. It is not viable
to do an exhaustive search through all combinations. Therefore, I used a guided search,
as outlined in the case study that follows.

First we measure the accuracy of the initial GNB using all voxels at the highest resolu-
tion. This step is necessary to ensure that our resolution and localization operations are
actually helping. The average accuracy over the six subjects was 74.2% when 7 ROIs
are used. All results quoted in this section are using 7 ROIs.

We now refer to Table 1 to explain the iterative progression of the algorithm. The �rst
iteration simply tries reducing the resolution by a factor of 2 in time, in z, and in xy.
These are done individually, so �rst we just reduce the resolution in time but not in any
other dimension, then we just reduce the resolution in z but not in any other dimension,
and so forth. Note that the x and y dimensions are treated as one, so whenever we reduce
the resolution in x, we also reduce it in y. The resulting accuracies for these experiments
are shown in the �rst 3 columns in Table 1 on the top row (iteration 1). We also perform
localization by a factor of 2 on each dimension in turn. There are 16 timeframes for each
voxel, so a localization by 2 in time means that the voxels from the �rst 8 timeframes
are put into one subset, and the voxels from the last 8 timeframes are put in another
subset. As with resolution, the x and y axes are considered as one. Hence, if we perform
localization by 2 on the xy axes, we end up with 4 subsets, with each subset of size 32x32
representing the 4 quadrants of the xy plane (which is of size 64x64). The results from
these 3 experiments are also shown in Table 1 on the row corresponding to iteration 1.

We now look at the 6 results in iteration 1 and choose the highest accuracy. The highest
accuracy occurred when we localized by 2 in the xy dimension. Therefore, the decision
from iteration 1 is to localize by 2 in xy.

The second iteration tries to improve the accuracy by localizing by 2 in xy as concluded
above, but also performing one other operation. Hence the �rst column of iteration 2
corresponds to localizing by 2 in xy and reducing the time resolution by 2. The second
column corresponds to localizing by 2 in xy and reducing the z resolution by 2, and so
forth. The �nal accuracy column in iteration 2 is when we localize by 2 in xy twice,
which is equivalent to localizing by 4. This would mean that the original 64x64 voxels
in the xy plane would be split into 16 subsets of 16x16 voxels.

The highest accuracy in iteration 2 corresponded to the case where the time resolution
was reduced by 2. Hence at this point, the optimal scheme is to localize the voxels by 2 in
the xy dimension, and to reduce the time resolution by a factor of 2. The next iteration
tries to improve accuracy by adding one more operation, and the process continues until
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Table 1: Iterations in training procedure
Resolution reduction Localization

Iteration Time z xy Time z xy Optimal scheme

1 78.3% 76.7% 73.5% 81.9% 85.8% 86.7% Split into 2 subsets along the x
axis and 2 subsets along the y

axis
2 89.6% 87.5% 87.3% 89.0% 87.7% 85.8% Do the above, and also reduce

time resolution by 2
3 90.3% 90.1% 89.6% 90.8% 90.2% 90.6% Do the above, and also split into

2 subsets along the time axis
4 92.5% 91.3% 89.8% 90.2% 90.6% 92.0% Do the above, but now reduce

time resolution by 4
5 92.9% 91.3% 91.5% 91.3% 92.7% 91.9% Do the above, but now reduce

time resolution by 8
6 N/A 92.5% 92.5% N/A 93.3% 92.7% Do the above, and also split into

2 subsets along the z axis
7 N/A 92.6% 92.5% N/A 92.9% 92.7% No further improvement possible

there is no further increase in accuracy. Note that iterations 5 and 6 have N/A under the
time localization and time resolution columns. The reason for this is that at this point in
our algorithm we are reducing time resolution by 8, hence changing from 16 timeframes
to only 2 timeframes. We are also localizing in time, thereby splitting these 2 timeframes
into separate subsets, with each subset containing the voxels from one timeframe. Clearly
it is not possible to further reduce the resolution in time, or to further localize in time,
hence these operations are unavailable at this point in the algorithm.

Therefore, the �nal result from this process was an accuracy of 93.3% (on the training
set). This accuracy was achieved by reducing the time resolution of the voxels by 8
(ie. averaging together the �rst 8 timeframes and the last 8 timeframes), splitting voxels
from each of the resultant timeframes into separate subsets, and also further dividing the
voxels in half along the xy and z dimensions. The �nal classi�cation bank will contain
16 subsets of voxels with each subset of voxels containing 32x32x4 voxels at full spatial
resolution, and with the time resolution reduced by 8.

5.3 Results

The previous section describes the procedure for choosing the resolution and localization
scheme. However the 93.3% quoted cannot be taken as a valid accuracy because the
resolution/localization scheme was tuned on the full dataset, and is thus tantamount to
training on the testing data. To obtain a true accuracy we need to use the full nested
cross validation scheme as described in Section 4.3. Table 2 shows the accuracies we
obtain with this algorithm for the case of all ROIs, 7 ROIs, and 4 ROIs as outlined in
Section 3. The baseline accuracy represents the accuracy if we just train a GNB on the
original data. Rapid mode represents the accuracy that we get if we use the algorithm
described in Section 4.4.2.

Note that these accuracies may increase slightly if 40-fold cross validation is used instead
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Table 2: Final results
All ROIs 7 ROIs 4 ROIs

Baseline accuracy 70.8% 74.2% 71.6%
Rapid mode 88.8% 91.0% 89.5%
Full mode 89.8% 92.0% 90.2%

of 10-fold cross validation. The training procedure also has several layers of nested cross
validation, so we could also use more folds of cross-validation in the inner loops.

6 Conclusions

The technique of altering resolution and dividing the voxels into localized subsets has
been shown to increase accuracy from 74.2% to 92.0% for the case of 7 ROIs. An
important point to note is that this method did not perform feature selection as done
in the related work. Consequently, it does not require access to voxel activity when the
subject was at rest. This technique also outperforms the quoted value of 82% which
is given for the GNB with feature selection, and also outperforms the 89% quoted for
the SVM with feature selection. An interesting addition would be to add the feature
selection method to my algorithm. This may cause further improvements, or we may
�nd that the advantages of feature selection have somehow been implicity incorporated
into my algorithm already, and thus no further gains are possible.

There are several natural extensions to the technique. The main restrictions with the
algorithm in its present form is that 1) every localized subset of voxels must have the
same resolution, 2) the localized subsets of voxels must be of the same size, 3) no voxel
can appear in more than one subset, or at more than one resolution. The only reason for
these restrictions is to reduce the volume of data and the number of possible combinations
of resolution and localizations. With a large training set, we could easily remove these
restrictions and still reliably search through the data and all possible combinations to
�nd the optimal classi�er. However, even with the size of the existing training set, there
may be methods that allow us to remove some of the aforementioned restrictions without
completely swamping the training process with an overload of data.

Therefore, in conclusion the concept of using multiple localized GNB classi�ers and
searching for the optimal resolution of the data has shown to be an e�ective enhancement,
and it has the potential to yield even further improvements yet.
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