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Abstract

New DNA sequencing technology implemented in the GS 20 sequencer 
reduces  cost  and  time  in  exchange  for  lower  accuracy.   DNA 
sequencing  errors  negatively  impact  downstream  applications  and 
therefore accurate base calls and error probabilities are invaluable to 
researchers.  This paper applies a graphical model to the base calling 
problem in context  of  the GS 20 sequencer.   This  model  integrates 
signal information from the local sequence neighborhood to generate 
calls  within  a  probabilistic  framework.   Results  indicate  improved 
accuracy for base calls early in the sequence process, but the overall 
perforance decreases.

1 Introduction

The  GS  20  is  a  DNA  sequencer  based  on  new  technology  developed  by  454  Life 
Sciences.  The platform is massively parallel, fast and cost effective in comparison to 
Sanger technology.   The trade off is a relatively high nucleotide base calling error rate of 
~1 error per 100 bases (after discarding low quality sequence).  Sequence accuracy can 
be improved by sequencing the same DNA template multiple times, but this is not always 
economically feasible for  large genome sequencing projects.   Sequencing errors have 
severe  negative  impact  on  downstream  applications,  such  as  gene  identification, 
genotyping and mutation detection.    The ideal error rate—less than one error in ten 
thousand bases—is unlikely to be achieved.  In lieu of higher accuracy, error probabilities 
are invaluable to researchers.

The GS 20 sequences DNA by a query and response process.  In each step the sequencer 
asks:  “How many consecutive T nucleotides (A,C,G respectively) appear next in the 
sequence?”    The DNA responds by producing a light signal with intensity proportional 
to the number of T's.  The same query is made iteratively for each of the four DNA bases, 
and the cycle is repeated.  Each base query is called a “flow”.  The cycle of queries 
T,A,C,G is called a “flow cycle”.  Each sequencing run consists of 42 flow cycles (168 
flows),  and is  known as a “flowgram”.  See the  publication in  Nature for technical 
details of the physical sequencing process [1].

This process is susceptible to several types of sequencing errors.  Here I discuss the  error 
types that are relevant to this paper.  The first type of error results from an increase in the 



noise  variance  as  the  signal  intensity  increases.   Consequently  base  calls  tend  to  be 
accurate when a single base is measured, while accuracy decreases rapidly when  a single 
base type occurs consecutively many times in a sequence.  The second type of error 
results from a loss of synchronization.  This is due to the fact that the sequencing reaction 
is performed simultaneously on many thousands of identical copies of the DNA template. 
The  combined  signal  from  the  cloned  templates  produces  sufficient  light  signal  for 
detection by CCD cameras.  If a fraction of the templates are de-synchronized, then the 
resulting signal is a sum of the current query and the previous and next queries (of the 
same base type).   This problem increases toward the end of the sequence and is most 
severe when the previous or next flow of the same base type measures a large signal.  The 
final type of error is due to residual signal from other flows.  This problem is also most 
severe when the previous or next query (of any base type) measures a large signal.

454  Life  Sciences  has  developed  propriety  software  which  processes  image  data, 
normalizes signals, predicts DNA base calls, and reports a quality score for each base. 
The quality score has the form Q = -10*log10 P(Error) where P(Error) is the probability 
that  the  base  call  is  incorrect.   P(Error) is  calculated  using  Bayes'  rule  from 
experimentally  determined  signal  distributions.   This  method  does  not  incorporate 
information from nearby flow signals  which may provide evidence that  increases  the 
probability of a base call error.  The following work attempts to maximize the accuracy 
of base calls and error predictions by incorporating signal information from the local 
neighborhood.

2 A Graphical Model representation of the GS 20 flowgram

The  base  calling  problem  is  represented  by  a  graphical  model  where  the  observed 
variables are 168 consecutive flow signals, S, measured by the GS 20 in each sequencing 
reaction.    The latent  variables are 168 base  calls  B,  corresponding to  the 168 flow 
signals, where the base call is the number of consecutive type A nucleotides (G, C, or T 
respectively) at the current position in the sequence.  The nth flow signal measurement, 
Sn,  is  dependent  primarily  on  base  call  Bn and  also  on  neighboring  base  calls.   In 

particular, the flow signal is dependent on  Bn-4 and the  Bn+4 to model the effect of de-
synchronization, and Bn-1 to model the effects of residual signal from the previous flow. 
This formulation is computationally difficult since the observation of flow signals allows 
information  passing between the  base  variables  through the  head-to-head path at  the 
observed  signal  variable.   Consequently  all  168  signal  variables  are  conditionally 
dependent.  This problem can be resolved by “flipping” the arrows in the model so the 
base variables are dependent on the signal variables.  In this formulation the observed 
variables block the flow of information at a tail-to-tail path.  Consequently the probability 
distribution for Bn is only dependent 4 observed flow signals.  Physically this formulation 
is backwards, but in probabilistic framework  there is obstacle to modeling the process in 
this  manner.   This  reduces  the  graphical  model  to  a  set  of  168 independent  discrete 
probability distributions P Bn∣S n−4 ,S n−1 ,S n , S n4 which can be learned by multi-
class  logistic  regression.   The  distribution of  Bn is  similar  for  neighboring  flows. 
Consequently,  neighboring flows can be grouped together and using to train a single 
model for the whole group.  However, since the signal noise increases over the duration 
of the sequence procedure, it is important to divide the flowgram into a number of groups 
which are trained independently to capture position dependent effects.

The basecall Bn may, in practice, take any integer value ≥ 0.  This poses a challenge 
during parameter  estimation since consecutive repeats  of  a  single base  longer  than 4 
bases  is  uncommon in  a  DNA sequence.   This  problem is  circumvented  using  two 
methods.  First, all base calls greater than k-1 are grouped into a single category.  Under 
this scheme Bn is described by a 1-of-k encoding (corresponding to base calls of 0 to k-1). 
This simplification prevents the model from distinguishing between base calls of k-1 or 
larger, but avoids the pitfalls of over fitting sparse data.   Secondly, during the training 



phase examples are weighted in a class dependent fashion.  Common classes are assigned 
a  unit  weight,  while  uncommon  classes  are  weighted  more  heavily.   The  weights 
effectively add “extra” training examples from uncommon classes.  This counteracts the 
tendency to lump the uncommon examples in a more common class.

Figure 1: A graphical model representation of GS 20 sequence data.

3 Methods

The model  was trained using  ~36,000 normalized flowgrams generated by the  GS 20 
using  P.aeruginosa strain PA01 genomic DNA as template.   The base calls for  each 
flowgram were initially generated by 454 Life Sciences proprietary software and then 
aligned to the high quality published PA01 genome by the MUMmer software package. 
The sequence alignments were used to label the training data.  The labeling process was 
automated using a Perl script.  36,000 additional PA01 flowgrams were set aside for test 
validation.

Flows were divided into 19 groups containing 8 consecutive flows.  A single classifier 
was trained for each group.  The flows were divided in this manner to account for the 
gradual increase in the signal noise towards the end of sequencing process.  The   first 8 
control flows were omitted from the analysis, as well as the first and last four flows of 
each  flowgram  (to  avoid  flows  without  all  relevant  neighbors).   The  form  of

P Bn∣S n−4 ,S n−1 ,S n , S n4 is modeled by a weighted Logistic Regression where Bn 

is a  1-of-5 encoding of the base call, and each  Sn is a continuous variable.   Training 
examples were weighted according to their base class to account for sparsity of training 
examples with class with  k>2.   Class weights {1, 1 , 3, 12, 42} were selected for the 
respective 5 classes by training classifiers with a variety of weights and choosing those 
which produced a reasonable balance of accuracy across all classes without significantly 
compromising overall accuracy.  Regression parameters were trained using a gradient 
descent algorithm with regularization implemented in MATLAB as:

W n
W n

E nX n
−W n



Where n is index of the flow group, wij is the weight parameter for class j of signal input 

i,  η=1.0e-6 is the step size,  λ=0.01 is the regularization parameter,  eil is the weighted 

error of class j  for training example l, and xli is signal input i for training example l.  The 

weighted error E is defined by: 

E=C⋅[Y−P Y∣X ,W ]
T

Where C is a diagonal matrix of class weights, Y is the matrix whose rows are the 1-of-5 
encoding  of  the  true  base  calls,  and  P(Y|X,W) is  the  matrix  of  class  probabilities. 
Optimization of the regularization parameter by validation over the test set is planned for 
the final project submission.  Dependence of the results on regularization was negligible. 
This was expected due to the large number of training examples in comparison to the 
number of parameters.  Base calls were generated by choosing the class with the highest 
probability.

4 Results

The model trained with uniform class weights was very accurate for classes k=0 and k=1. 
However, accuracy dropped rapidly for classes k≥2 due to the lower frequency of these 
classes.   Table 1 shows the effects of various class weights on the accuracy of each class. 
In all cases the accuracy decreases in the larger classes due to increasing signal variance. 
The weights {1,1,3,12,42} were chosen for the final analysis as a balance between overall 
accuracy and improved discrimination for the larger classes.  The size of the weights is 
similar to, but slightly less than, the relative frequency of the base classes.

Table 1:  Class error rates for group 1 using various class weights.  Unit weights result in 
100% error for base calls 3 or greater.  Increasing weights for underrepresented classes 
improves the performance in these categories, but at the expense of some accuracy for 

base calls 2 and lower.

CLASS WEIGHTS ERROR 
K=0

ERROR 
K=1

ERROR
K=2

ERROR 
K=3

ERROR
K=4+

1,1,1,1,1 .0004 .0003 .0478 1.000 1.000
1,1,4,16,64 .0006 .0020 .0025 .1271 1.000
1,1,3,12,42 .0006 .0011 .0036 .3872 .4870
1,1,3,12,48 .0006 .0011 .0036 .5052 .1005
1,1,3,9,27 .0006 .0011 .0029 .5098 .9536
1,1,2,8,16 .0005 .0005 .0122 .2607 1.000

The average error rate of the final model on the test data set was 2.49%.  However, the 
accuracy depends on several factors, and in many cases the error is much lower or higher 
than average.  The first factor is the position of the flow within the flowgram.   The 
average error for a base call in the first half of the flowgram is 0.87%, while the error in 
the second half increases to 4.0%.  This trend emphasizes the importance of training 
separate models along the length of the flowgram.  The error is also dependent on the 
base class.  The average error rates for each class are:  0.39%, 0.66%, 1.1%, 14.3%, and 
13.9%  (respectively)  for  the  first  half  of  the  flowgram.  The  model  is  ineffective  at 
determining the exact number of consecutive nucleotides when there are 3 or more of the 
same type.  Figure 2 summarizes these results.



Figure 2:  Base call error rate for each group and class.  The error rate in the first half of 
the flowgram is near 1% for  basecalls of 0, 1 and 2; but much higher for 3 and 4+. 

Error rates increase significantly toward the end of the flowgram, as expected.

In order to determine the effectiveness of this approach, a simple model using only 1 
signal input per flow was trained on the same data set.  A comparison of the performance 
between the full model and the single input model is shown in figure 3.  The overall error 
rate of the single input model is lower than the full model (2.39% error).  However, the 
full model performs better in the first half of the flowgram.

5  Discussion

Integrating signal information from the neighborhood surrounding a flow yields a modest 
increase in the accuracy of base calls in the early portion of a flowgram.  This result 
agrees with the observation that signals generated by the GS 20 are dependent on the 
nature of the local sequence.  However, the overall accuracy of this approach is lower 
than a simple model that considers only the primary signal.  This calls into question the 
utility of the method.  It appears that the information available in the neighboring signals 
is small and easily overwhelmed by the increase in signal variance towards the end of the 
flowgram.  A combination of the two models, where the second half of the flowgram is 
evaluated by the single input model, may yield the best overall results.

The GS 20, combined with methods here, is fairly accurate in discriminating between 
base calls 0 and 1 in the first half of a flowgram (average error 0.5%).  This suggests that 
GS 20 data is most reliable for single nucleotide polymorphisms (SNPs) application when 
the neighboring bases are distinct from the SNP in question.  Other applications, such as 
ORF identification, are likely to be problematic.



Figure 3:  Ratio of base call error rate for the full model over a model trained using only 
one signal input.  The full model performs better for classes k=0,1,2 in the first half of 

the flowgram.  The single input model tends to perform better for classes k=3,4+ and in 
the second half of the flowgram. 
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